```--- a/inst/@galois/dftmtx.m
+++ b/inst/@galois/dftmtx.m
@@ -29,39 +29,39 @@
## The inverse Fourier transform is given by @code{dftmtx (1 / @var{a})}
## @end deftypefn

-function d = dftmtx(a)
+function d = dftmtx (a)

if (nargin != 1)
print_usage ();
endif

-  if (!isgalois(a))
-    error("dftmtx: argument must be a galois variable");
+  if (!isgalois (a))
+    error ("dftmtx: argument must be a galois variable");
endif

m = a.m;
prim = a.prim_poly;
n = 2^a.m - 1;
if (n > 255)
-    error ([ "dftmtx: argument must be in Galois Field GF(2^m), where" ...
-           " m is not greater than 8"]);
+    error (["dftmtx: argument must be in Galois Field GF(2^m), where" ...
+            " m is not greater than 8"]);
endif

-  if (length(a) ~= 1)
+  if (length (a) ~= 1)
error ("dftmtx: argument must be a scalar");
endif

-  mp = minpol(a);
-  if ((mp(1) ~= 1) || !isprimitive(mp))
-    error("dftmtx: argument must be a primitive nth root of unity");
+  mp = minpol (a);
+  if ((mp(1) ~= 1) || !isprimitive (mp))
+    error ("dftmtx: argument must be a primitive nth root of unity");
endif

-  step = log(a);
+  step = log (a);
step = step.x;
-  row = exp(gf([0:n-1], m, prim));
-  d = zeros(n);
-  for i=1:n;
-    d(i,:) = row .^ mod(step*(i-1),n);
+  row = exp (gf ([0:n-1], m, prim));
+  d = zeros (n);
+  for i = 1:n;
+    d(i,:) = row .^ mod (step*(i-1), n);
endfor

endfunction
```