[d39d4b]: inst / quotamack.m  Maximize  Restore  History

Download this file

148 lines (134 with data), 5.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
## Copyright (C) 2009 Esteban Cervetto <estebancster@gmail.com>
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{quotas} =} quotaad (@var{s},@var{v})
## Calculate the cumulative quotas by the Mack method.
##
## @var{s} is a mxn matrix that contains the run-off triangle, where m is the number of accident-years
## and n is the number of periods to final development. @var{s} may contain u = m-n complete years.
## The value @var{s}(i,k), 1<=i<=m, 0<=k<=n-1 represents the cumulative losses from accident-period i
## settled with a delay of at most k years.
## The values @var{s}(i,k) with i + k > m must be zero because is future time.
## @var{v} is a mx1 vector of known volume measures (like premiums or the number of contracts).
##
## The Mack method asumes that exists a vector @var{v} and a vector P(i) 1<=i<=m of parameters
## such that holds for all i = {1,...,m} the next identity:
##
## @group
## @example
## ultimate(i) = V(i)*P(i)
## @end example
## @end group
##
## where
##
## @group
## @example
## l=n-1
## P(i)= O_mack(i) * E IRL_Mack(l)
## l=0
## @end example
## @end group
##
## ,
##
## @group
## @example
## l=n-k-1
## E Z(j,k)
## j=0
## IRL_Mack(i) = ---------------------
## l=n-k-1
## E V(i)*O_Mack(l)
## l=0
## @end example
## @end group
##
## and
##
## @group
## @example
## l=n-i-1
## E Z(i,l)
## l=0
## O_Mack(i) = ------------------
## l=n-1
## E V(i)*IRL(l) (see IRL definition in quotaad function)
## l=0
## @end example
## @end group
##
## Z represents the incremental losses; then losses satisfy
## Z(k) = (S(k) - S(k-1) ),Z(0) = S(0) for all i = {1,...,m}.
##
## @var{quotas} returns a row vector with the cumulative quotas. The formula is:
## @group
## @example
## l=k
## E IRL_Mack(l)
## l=0
## @var{quotas}(k) = ------------------
## l=n-1
## E IRL_Mack(l)
## l=0
## @end example
## @end group
##
## @seealso {bferguson, quotald, quotapanning, quotaad}
## @end deftypefn
## Author: Act. Esteban Cervetto ARG <estebancster@gmail.com>
##
## Maintainer: Act. Esteban Cervetto ARG <estebancster@gmail.com>
##
## Created: jul-2009
##
## Version: 1.1.0
##
## Keywords: actuarial reserves insurance bornhuetter ferguson chainladder
function [quotas] = quotamack (S,V)
[m,n] = size (S); #triangle with m years (i=1,2,u,...u+1,u+2,....m) and n periods (k=0,1,2,...n-1)
u = m - n; #rows of the upper square
S = fliplr(triu(fliplr(S),-u)); #ensure S is triangular
if (size(V) ~= [m,1])
usage(strcat("volume V must be of size [",num2str(m),",1]" ));
end
# Z triangle
Z = [S(:,1), S(:,2:n)-S(:,1:n-1)];
Z = fliplr(triu(fliplr(Z),-u)); #clean Z
# calculate empirical individual loss ratios
a = repmat (V,1,n);
LRI = Z ./ a;
# weights V(i)/sum(1,n-k,V(i))
num =fliplr(triu(fliplr(a),-u)); #numerator and clean low triangle
den = repmat(sum(num),m,1); #denominator
den = fliplr(triu(fliplr(den),-u)); #clean low triangle
W = num./den; #divide by
W = fliplr(triu(fliplr(W),-u));
# incremental Loss Ratios AD
LRI_AD = diag(LRI' * W)'; #weighted product
if (u==0)
b = (diag(fliplr(S),-u) ./ flipud(cumsum(LRI_AD)') ) ./ V;
else
b = ([S(1:u,n); diag(fliplr(S),-u)] ./ [sum(LRI_AD)*ones(1,u);flipud(cumsum(LRI_AD)')] ) ./ V;
end
sZ = sum (Z); #sum of Z
sb = repmat(b,1,n);
sb = fliplr(triu(fliplr(sb),-u));
sV = repmat(V,1,n);
sV = fliplr(triu(fliplr(sV),-u));
LRI_Mack = sZ ./ (diag(sb'*sV))';
quotas = cumsum(porcentual(LRI_Mack)); #calculate cumulated quota
end

Get latest updates about Open Source Projects, Conferences and News.

Sign up for the SourceForge newsletter:





No, thanks