```--- a/inst/quotamack.m
+++ b/inst/quotamack.m
@@ -15,7 +15,7 @@

## -*- texinfo -*-
-## @deftypefn {Function File} {@var{quotas} =} quotaad (@var{s},@var{v})
+## @deftypefn {Function File} {@var{quotas} =} quotaad (@var{s}, @var{v})
## Calculate the cumulative quotas by the Mack method.
##
## @var{s} is a mxn matrix that contains the run-off triangle, where m is the number of accident-years
@@ -82,47 +82,47 @@
## @seealso {bferguson, quotald, quotapanning, quotaad}
## @end deftypefn

-function [quotas] = quotamack (S,V)
+function [quotas] = quotamack (S, V)

-[m,n] = size (S);           #triangle with m years (i=1,2,u,...u+1,u+2,....m) and n periods (k=0,1,2,...n-1)
-u = m - n;                                     #rows of the upper square
-S = fliplr(triu(fliplr(S),-u));                   #ensure S is triangular
+  [m,n] = size (S);           #triangle with m years (i=1,2,u,...u+1,u+2,....m) and n periods (k=0,1,2,...n-1)
+  u = m - n;                                     #rows of the upper square
+  S = fliplr(triu(fliplr(S),-u));                   #ensure S is triangular

-if (size(V) ~= [m,1])
- usage(strcat("volume V must be of size [",num2str(m),",1]" ));
-end
+  if (size(V) ~= [m,1])
+    error(strcat("volume V must be of size [",num2str(m),",1]" ));
+  end

-# Z triangle
-Z = [S(:,1), S(:,2:n)-S(:,1:n-1)];
-Z = fliplr(triu(fliplr(Z),-u));             #clean Z
+  # Z triangle
+  Z = [S(:,1), S(:,2:n)-S(:,1:n-1)];
+  Z = fliplr(triu(fliplr(Z),-u));             #clean Z

-# calculate empirical individual loss ratios
-a = repmat (V,1,n);
-LRI = Z ./ a;
+  # calculate empirical individual loss ratios
+  a = repmat (V,1,n);
+  LRI = Z ./ a;

-# weights V(i)/sum(1,n-k,V(i))
-num =fliplr(triu(fliplr(a),-u));            #numerator and clean low triangle
-den = repmat(sum(num),m,1);                 #denominator
-den = fliplr(triu(fliplr(den),-u));         #clean low triangle
-W = num./den;                               #divide by
-W = fliplr(triu(fliplr(W),-u));
+  # weights V(i)/sum(1,n-k,V(i))
+  num =fliplr(triu(fliplr(a),-u));            #numerator and clean low triangle
+  den = repmat(sum(num),m,1);                 #denominator
+  den = fliplr(triu(fliplr(den),-u));         #clean low triangle
+  W = num./den;                               #divide by
+  W = fliplr(triu(fliplr(W),-u));

-LRI_AD  = diag(LRI' * W)';                  #weighted product
+  # incremental Loss Ratios AD
+  LRI_AD  = diag(LRI' * W)';                  #weighted product

-if (u==0)
-b = (diag(fliplr(S),-u) ./ flipud(cumsum(LRI_AD)') ) ./ V;
-else
-end
+  if (u==0)
+  b = (diag(fliplr(S),-u) ./ flipud(cumsum(LRI_AD)') ) ./ V;
+  else
+  end

-sZ = sum (Z);                              #sum of Z
-sb = repmat(b,1,n);
-sb = fliplr(triu(fliplr(sb),-u));
-sV = repmat(V,1,n);
-sV = fliplr(triu(fliplr(sV),-u));
+  sZ = sum (Z);                              #sum of Z
+  sb = repmat(b,1,n);
+  sb = fliplr(triu(fliplr(sb),-u));
+  sV = repmat(V,1,n);
+  sV = fliplr(triu(fliplr(sV),-u));

-LRI_Mack = sZ ./ (diag(sb'*sV))';
-quotas = cumsum(porcentual(LRI_Mack));     #calculate cumulated  quota
+  LRI_Mack = sZ ./ (diag(sb'*sV))';
+  quotas = cumsum(porcentual(LRI_Mack));     #calculate cumulated  quota

end
```