## Diff of /inst/ultimatemack.m[bbbd80] .. [5b02c4]  Maximize  Restore

### Switch to side-by-side view

```--- a/inst/ultimatemack.m
+++ b/inst/ultimatemack.m
@@ -15,7 +15,7 @@

## -*- texinfo -*-
-## @deftypefn {Function File} {@var{ultimate} =} ultimatemack (@var{s},@var{v})
+## @deftypefn {Function File} {@var{ultimate} =} ultimatemack (@var{s}, @var{v})
## Calculate the ultimate value by the Mack method.
##
## @var{s} is a mxn matrix that contains the run-off triangle, where m is the number of accident-years
@@ -26,28 +26,23 @@
## @var{v} is a mx1 vector of known volume measures (like premiums or the number of contracts).
##
## The Mack method asumes that exists a vector @var{v} and a vector P(i) 1<=i<=m of parameters
-## such that holds for all i = {1,...,m} the next identity:
+## such that holds for all i = @{1, @dots{}, m@} the next identity:
##
-## @group
-## @example
+## @verbatim
## ultimate(i) = V(i)*P(i)
-## @end example
-## @end group
+## @end verbatim
##
## where
##
-## @group
-## @example
+## @verbatim
##                   l=n-1
## P(i)= O_mack(i) *   E   IRL_Mack(l)
##                    l=0
-## @end example
-## @end group
+## @end verbatim
##
## ,
##
-## @group
-## @example
+## @verbatim
##                   l=n-k-1
##                     E     Z(j,k)
##                    j=0
@@ -55,13 +50,11 @@
##                   l=n-k-1
##                     E   V(i)*O_Mack(l)
##                    l=0
-## @end example
-## @end group
+## @end verbatim
##
## and
##
-## @group
-## @example
+## @verbatim
##                   l=n-i-1
##                     E     Z(i,l)
##                    l=0
@@ -69,32 +62,19 @@
##                   l=n-1
##                     E   V(i)*IRL(l)    (see IRL definition in quotaad function)
##                    l=0
-## @end example
-## @end group
+## @end verbatim
##
## Z represents the incremental losses; then losses satisfy
-## Z(k) = (S(k) - S(k-1) ),Z(0) = S(0) for all i = {1,...,m}.
+## Z(k) = (S(k) - S(k-1) ),Z(0) = S(0) for all i = @{1, @dots{}, m@}.
##
## @var{ultimate} returns a column vector with the m ultimate values. Following the main equation:
-## @group
-## @example
-## @var{ultimate}(i) = V(i)*P(i)
-## @end example
-## @end group
+##
+## @verbatim
+## ULTIMATE(i) = V(i)*P(i)
+## @end verbatim
##
## @seealso {bferguson, quotald, quotapanning, quotaad, quotamack}
## @end deftypefn
-
-## Author: Act. Esteban Cervetto ARG <estebancster@gmail.com>
-##
-## Maintainer: Act. Esteban Cervetto ARG <estebancster@gmail.com>
-##
-## Created: jul-2009
-##
-## Version: 1.1.0
-##
-## Keywords: actuarial reserves insurance bornhuetter ferguson chainladder
-

function ultimate = ultimatemack (S,V)

```