You can subscribe to this list here.
2000 |
Jan
(8) |
Feb
(49) |
Mar
(48) |
Apr
(28) |
May
(37) |
Jun
(28) |
Jul
(16) |
Aug
(16) |
Sep
(44) |
Oct
(61) |
Nov
(31) |
Dec
(24) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2001 |
Jan
(56) |
Feb
(54) |
Mar
(41) |
Apr
(71) |
May
(48) |
Jun
(32) |
Jul
(53) |
Aug
(91) |
Sep
(56) |
Oct
(33) |
Nov
(81) |
Dec
(54) |
2002 |
Jan
(72) |
Feb
(37) |
Mar
(126) |
Apr
(62) |
May
(34) |
Jun
(124) |
Jul
(36) |
Aug
(34) |
Sep
(60) |
Oct
(37) |
Nov
(23) |
Dec
(104) |
2003 |
Jan
(110) |
Feb
(73) |
Mar
(42) |
Apr
(8) |
May
(76) |
Jun
(14) |
Jul
(52) |
Aug
(26) |
Sep
(108) |
Oct
(82) |
Nov
(89) |
Dec
(94) |
2004 |
Jan
(117) |
Feb
(86) |
Mar
(75) |
Apr
(55) |
May
(75) |
Jun
(160) |
Jul
(152) |
Aug
(86) |
Sep
(75) |
Oct
(134) |
Nov
(62) |
Dec
(60) |
2005 |
Jan
(187) |
Feb
(318) |
Mar
(296) |
Apr
(205) |
May
(84) |
Jun
(63) |
Jul
(122) |
Aug
(59) |
Sep
(66) |
Oct
(148) |
Nov
(120) |
Dec
(70) |
2006 |
Jan
(460) |
Feb
(683) |
Mar
(589) |
Apr
(559) |
May
(445) |
Jun
(712) |
Jul
(815) |
Aug
(663) |
Sep
(559) |
Oct
(930) |
Nov
(373) |
Dec
|
From: Sven S. <sve...@gm...> - 2006-08-14 19:59:04
|
Hi, Satya Upadhya schrieb: >>>> from Numeric import * Well this list is about the numpy package, but anyway... > the power function is giving a resultant matrix in which each element of > matrix B is raised to the power of 0 so as to make it 1. But, taken as a > whole i.e. matrix B to the power of 0 should have given the identity > matrix. afaik, in numpy terms if you are dealing with a numpy array, such functions are elementwise by design. In contrast, if you have a numpy matrix (a special subclass of the array class) --constructed e.g. as mat(eye(3))-- then power is redefined to be the matrix power; at least that's the rule for the ** operator, not 100% sure if for the explicit power() function as well, but I suppose so. > > Also, what is the procedure for taking the log of an entire matrix > (log(A) where A is a matrix takes the log of every individual element in > A, but thats not the same as taking the log of the entire matrix) I don't understand what you want, how do you take the log of a matrix mathematically? -Sven |
From: Satya U. <sat...@ya...> - 2006-08-14 19:44:12
|
Dear All, Just a few queries regarding matrices. On my python shell i typed: >>> from Numeric import * >>> from LinearAlgebra import * >>> A = [1,2,3,4,5,6,7,8,9] >>> B = reshape(A,(3,3)) >>> B array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> X = identity(3) >>> X array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> D = power(B,0) >>> D array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]) the power function is giving a resultant matrix in which each element of matrix B is raised to the power of 0 so as to make it 1. But, taken as a whole i.e. matrix B to the power of 0 should have given the identity matrix. Also, what is the procedure for taking the log of an entire matrix (log(A) where A is a matrix takes the log of every individual element in A, but thats not the same as taking the log of the entire matrix) Thanking you, Satya --------------------------------- Here's a new way to find what you're looking for - Yahoo! Answers Send FREE SMS to your friend's mobile from Yahoo! Messenger Version 8. Get it NOW |
From: Travis O. <oli...@ie...> - 2006-08-14 19:32:09
|
> Hi, > I just realized that this question did actually not get sorted out. > Now I'm just about to convert my code to compare > arr.dtype.type to the (default scalar!) dtype numpy.uint8 > like this: > if self.img.dtype.type == N.uint8: > self.hist_min, self.hist_max = 0, 1<<8 > elif self.img.dtype.type == N.uint16: > self.hist_min, self.hist_max = 0, 1<<16 > ... > > Yes, you can do this and it should work independent of byteorder. The dtype comparison will take into account the byte-order but comparing the type objects directly won't. So, if that is your intent, then great. -Travis |
From: Sebastian H. <ha...@ms...> - 2006-08-14 18:02:58
|
On Monday 24 July 2006 12:36, Travis Oliphant wrote: > Sebastian Haase wrote: > > Hi, > > if I have a numpy array 'a' > > and say: > > a.dtype == numpy.float32 > > > > Is the result independent of a's byteorder ? > > (That's what I would expect ! Just checking !) > > I think I misread the question and saw "==" as "=" > > But, the answer I gave should still help: the byteorder is a property > of the data-type. There is no such thing as "a's" byteorder. Thus, > numpy.float32 (which is actually an array-scalar and not a true > data-type) is interepreted as a machine-byte-order IEEE floating-point > data-type with 32 bits. Thus, the result will depend on whether or not > a.dtype is machine-order or not. > > -Travis Hi, I just realized that this question did actually not get sorted out. Now I'm just about to convert my code to compare arr.dtype.type to the (default scalar!) dtype numpy.uint8 like this: if self.img.dtype.type == N.uint8: self.hist_min, self.hist_max = 0, 1<<8 elif self.img.dtype.type == N.uint16: self.hist_min, self.hist_max = 0, 1<<16 ... This seems to work independent of byteorder - (but looks ugly(er)) ... Is this the best way of doing this ? - Sebastian Haase |
From: Travis O. <oli...@ie...> - 2006-08-14 18:01:51
|
Travis Oliphant wrote: > However, you can use the ndarray creation function itself to do what you > want: > > a = ndarray(shape=(2,2), dtype=int32, buffer=str, order='F') > > This will use the memory of the string as the new array memory. > Incidentally, the new array will be read-only. But, you can fix this in two ways: 1) a.flags.writeable = True --- This is a cheat that avoids the extra copy on pickle-load and let's you use strings as writeable buffers. Don't abuse it. It will disappear once Python 3k has a proper bytes type. 2) a = a.copy() -Travis |
From: Travis O. <oli...@ie...> - 2006-08-14 17:55:43
|
Matthew Brett wrote: > Hi, > > I am sorry if this is obvious, but: > It's O.K. I don't think many people are used to the fortran-order stuff. So, I doubt it's obvious. > For example, here is 0,1,2,3 as int32 > > str = '\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00' > > What is the best way of me putting this into a 2x2 array object so > that the array recognizes the data is in fortran order. Sort of: > > a = somefunction(str, shape=(2,2), dtype=int32, order='F') > There isn't really a function like this because the fromstring function only creates 1-d arrays that must be reshaped later (it also copies the data from the string). However, you can use the ndarray creation function itself to do what you want: a = ndarray(shape=(2,2), dtype=int32, buffer=str, order='F') This will use the memory of the string as the new array memory. -Travis |
From: Bryce H. <bhe...@en...> - 2006-08-14 17:33:56
|
The Live CD is meant to be paired with the tutorial sessions, but contains just the latest builds + svn checkouts. Once the tutorials are available, we should add them to the same wiki page for downloading. I built the CD's in a VMWare virtual machine, if anyone is interested in the VMWare image, I can make it available via bittorrent too, maybe even with instructions on how to update the files and re-master the ISO :) Bryce ainulinde wrote: > FYI, I chang my bt client from bitcomet to uTorrent, and it works now. > and I have downloaded the iso by http://blabla. > in the vmware vitural machine, the livecd boot and i can use > ipython/import numpy... > is there any more feature or special scipy conference stuff on the cd? > > |
From: Matthew B. <mat...@gm...> - 2006-08-14 17:23:11
|
Hi, I am sorry if this is obvious, but: I am working on the scipy loadmat module, and would like to use numpy to reformat the fortran order arrays that matlab saves. I was not sure how to do this, and would like to ask for advice. Let us say that I have some raw binary data as a string. The data contains 4 integers, for a 2x2 array, stored in fortran order. For example, here is 0,1,2,3 as int32 str = '\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00' What is the best way of me putting this into a 2x2 array object so that the array recognizes the data is in fortran order. Sort of: a = somefunction(str, shape=(2,2), dtype=int32, order='F') such that a.shape = (2,2) and a[1,0] == 1, rather than 2. Sorry if that's obvious, but I couldn't see it immediately.... Thanks a lot, Matthew |
From: ainulinde <ain...@gm...> - 2006-08-14 17:21:44
|
FYI, I chang my bt client from bitcomet to uTorrent, and it works now. and I have downloaded the iso by http://blabla. in the vmware vitural machine, the livecd boot and i can use ipython/import numpy... is there any more feature or special scipy conference stuff on the cd? On 8/11/06, ainulinde <ain...@gm...> wrote: > can't get any seeds for this torrent and any other download methods? thanks > > On 8/11/06, Bryce Hendrix <bhe...@en...> wrote: > > For those not able to make SciPy 2006 next week, or who would like to > > download the ISO a few days early, its available at > > http://code.enthought.com/downloads/scipy2006-i386.iso.torrent. > > > > We squashed a lot onto the CD, so I also had to trim > 100 MB of > > packages that ship with the standard Ubuntu CD. Here's what I was able > > to add: > > > > * SciPy build from svn (Wed, 12:00 CST) > > * NumPy built from svn (Wed, 12:00 CST) > > * Matplotlib built from svn (Wed, 12:00 CST) > > * IPython built from svn (Wed, 12:00 CST) > > * Enthought built from svn (Wed, 16:00 CST) > > * ctypes 1.0.0 > > * hdf5 1.6.5 > > * networkx 0.31 > > * Pyrex 0.9.4.1 > > * pytables 1.3.2 > > > > All of the svn checkouts are zipped in /src, if you'd like to build from > > a svn version newer than what was shipped, simple copy the compressed > > package to your home dir, uncompress it, run "svn upate", and built it. > > > > Please note: This ISO was built rather hastily, uses un-official code, > > and received very little testing. Please don't even consider using this > > in a production environment. > > > > Bryce > > > > ------------------------------------------------------------------------- > > Using Tomcat but need to do more? Need to support web services, security? > > Get stuff done quickly with pre-integrated technology to make your job easier > > Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo > > http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642 > > _______________________________________________ > > Numpy-discussion mailing list > > Num...@li... > > https://lists.sourceforge.net/lists/listinfo/numpy-discussion > > > |
From: <we...@to...> - 2006-08-14 11:41:54
|
<html> <head> <meta http-equiv="Content-Type" content="text/html; charset=gb2312"> <title>无标题文档</title> <style type="text/css"> <!-- .td { font-size: 12px; color: #313131; line-height: 20px; font-family: "Arial", "Helvetica", "sans-serif"; } --> </style> </head> <body leftmargin="0" background="http://bo.sohu.com//images/img20040502/dj_bg.gif"> <table width="100%" border="0" cellspacing="0" cellpadding="0"> <tr> <td height="31" background="http://igame.sina.com.cn/club/images/topmenu/topMenu_8.gif" class="td"><div align="center"><font color="#FFFFFF">主办单位:易腾企业管理咨询有限公司</font></div></td> </tr> </table> <br> <table width="673" border="0" align="center" cellpadding="0" cellspacing="0"> <tr> <td height="62" bgcolor="#8C8C8C"> <div align="center"> <table width="100%" border="0" cellspacing="1" cellpadding="0" height="69"> <tr> <td height="67" bgcolor="#F3F3F3"><div align="center"><font lang="ZH-CN" color="#FF0000" size="6"><b>生产一线主管技能提升</b></font></div></td> </tr> </table> </div></td> </tr> </table> <table width="673" border="0" align="center" cellpadding="0" cellspacing="0" class="td" height="1411"> <tr> <td height="1415" bgcolor="#FFFFFF"> <div align="center"> <table width="99%" border="0" cellspacing="0" cellpadding="0"> <tr> <td width="17%" height="20" bgcolor="#BF0000" class="td"> <div align="center"><font color="#FFFFFF">[课 程 背 景]</font></div></td> <td width="83%" class="td"> </td> </tr> <tr> <td height="74" colspan="2" class="td"> <p ALIGN="JUSTIFY"><font LANG="ZH-CN"> </font><font lang="ZH-CN" size="2"> </font><font lang="ZH-CN" size="2"><span style="mso-bidi-font-size: 9.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">对于很多的班组长来讲,从优秀的技术工人走向基层管理岗位,很多时候不得不面对:<br> 1、上级骂、下属怨,生产现场一天忙的脚朝天,现场管理依然乱糟糟....<br> 2、生产任务完不成找我,员工有情绪找我,效率、质量搞不好也找我...<br> 3、手下一管就是几十号人,做事我行,管人、带人,让这群人顺顺畅畅完成工作可就...<br> 4、你说一套,他做另外一套,他觉得他的方法还比你好,怎么个教法?<br> 5、生产线变化频繁,会这个,不会那个,人一堆,岗位却常常缺人手,怎么办?<br> 6、大错不犯,小错不断,员工老是违反纪律,怎么让员工改正?<br> 7、表现不好,说他几句,表面应承,后面跟你对着干,怎么让员工接受主管的意见?<br> 8、愣头青、老油条、刺儿头如何管,如何带?<br> 9、发生问题,主管总是最后一个知道信息,怎么跟员工沟通,让员工有效配合工作?<br> 10、我们基层主管既决定不了员工薪水,也决定不了公司环境,怎么激励手下这些人?<br> 11、生产现场我们也想搞好,可就是难以有效发现问题,在生产现场怎样培养问题意识?<br> 12、一天到晚都在处理问题,可是很多时候还是头痛医头,脚痛医脚,怎么办?<br> 一流的工厂都拥有一流的制造现场--持续提高效率、不断降低制造成本:一流的主管培养训练了一流的员工,一流员工创造了一流的现场!优秀的一线主管不仅有扎实的技术操作能力,而且有着丰富的解决问题、管理团队的"软"技能!调查显示我国大多制造企业的事实是:企业中许多承担管理职能的一线主管,大多只发挥了"技术能手"的作用,多数都是"球星出身",而没有发挥"一线教练"的作用,没能带出一个出色的团队! 如何从"技术操作型能手"转变为"一线教练型能手"--欢迎您参加本期生产管理技能培训!<br> 参加对象: 班组长、技术员</span></font></td> </tr> </table> </div> <div align="center" style="width: 671; height: 1"> </div> <div align="center"> <table width="99%" height="84" border="0" cellpadding="0" cellspacing="0"> <tr> <td width="17%" height="20" bgcolor="#0080C0" class="td"> <div align="center"><font color="#FFFFFF">[课 程 大 纲]</font></div></td> <td width="83%" class="td"> </td> </tr> <tr> <td height="64" colspan="2" class="td"> <p><font size="2"><font color="#0000FF">第一篇 班组长的角色认知及其素养</font><br> 一、班组长的角色认知<br> 班组长的地位和使命<br> 班组长的重要作用<br> 班组长的素质要求<br> 认识企业管理中的各种角色<br> 角色认知--对自己和环境的分析<br> 二、班组长应学习的团队管理和沟通技术<br> 如何实施有效的信息传递<br> 如何与上级、同级沟通<br> 现场团队建设与职场沟通<br> 如何领导不同个性的人<br> 沟通游戏:学会沟通技巧<br> 团队冲突的原因分析<br> 如何提升团队战斗力<br> 三、班组成本分析与目标管理<br> 如何分析分解各项管理指标<br> 如何制定目标<br> 如何组织实施并达成目标<br> <br> <font color="#0000FF">第二篇 班组长应备的管理技能</font><br> 一、如何进行工作汇报<br> 工作汇报的含义及其方式<br> 工作汇报的主要内容<br> 工作汇报的具体要求<br> 二、如何管理下属<br> 了解下属的期望值<br> 如何化解下属的矛盾<br> 如何对待非正式群体<br> 如何批评下属<br> 三、工作教导与员工绩效改善<br> 工作现场经常出现的问题<br> 何时需要工作教导<br> 员工绩效不良的原因分析<br> 如何教导下属改善绩效<br> 讨论:培训下属误区分析<br> 提高OJT培训效果的秘诀<br> 工作教导四阶段 <br> 使用"现场多技能管理表"<br> 演练:改变下属不良行为<br> <br> <font color="#0000FF">第三篇 如何组织实施品质和效率改善</font><br> 一、工作改善的思路与方法 <br> 现场工作改善的基础:5S与目视管理<br> 工作改善基本原则和着眼点<br> 工作改善的基本方法和工具<br> 现场防呆管理(Poka Yoke)<br> 现场安全管理与改善<br> 演练:应用头脑风暴法改善工作<br> 二、发掘问题与解决问题的能力<br> 发掘问题与解决问题是企业发展的内在动力<br> 面对问题的心态<br> 面对复杂的工作--如何突破困境<br> 问题分析与解决"正确之程序<br> 案例:丰田公司解决问题的思维模式<br> 三、现场品质管理<br> 生产过程中品质如何来控制<br> 出现品质异常时如何来处理<br> 品质信息的反馈、跟进、与处理<br> 如何开展QCC品管圈活动<br> 案例:GE是如何实践"品质至上"<br> 四、IE现场改善<br> 现场改善是成本降低的基础 <br> IE现场改善方法<br> 如何挖掘成本浪费所在 <br> 如何清除人员的浪费<br> 如何降低材料损耗直接之成本<br> 改善生产工艺、提升效率、达至降低成本<br> 案例:丰田汽车JIT精益生产实际案例</font> </p></td> </tr> </table> <table width="99%" height="84" border="0" cellpadding="0" cellspacing="0"> <tr> <td width="17%" height="20" bgcolor="#0080C0" class="td"> <div align="center"><font color="#FFFFFF">[导 师 简 介]</font></div></td> <td width="83%" class="td"> </td> </tr> <tr> <td height="64" colspan="2" class="td"> <p><span style="font-size:9.0pt; font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family: "Times New Roman";letter-spacing:0pt" class="9p1"> </span><span style="letter-spacing: 0pt" class="9p1"><font size="2"> </font><span style="letter-spacing: 0pt"><font color="#FF0000" size="3">Mr Wang</font><font size="2">,<font color="#FF0000">管理工程硕士、高级经济师,6SIGMA黑带,国际职业培训师协会认证职业培训师。</font>王先生长期推行工业工程、精益生产等先进运作方式,历任大型跨国公司生产负责人、工业工程经理、项目总监,王老师主要从事生产计划与物料控制、IE技术应用、成本控制、价值工程的讲授,先后为IBM、TDK、松下、可口可乐、康师傅、汇源果汁、雪津啤酒、吉百利食品、冠捷电子、INTEX明达塑胶、正新橡胶、美国ITT集团、广上科技、美的空调、中兴通讯、京信通信,联想电脑,应用材料(中国)公司、艾克森-金山石化、中国化工进出口公司、正大集团大福饲料、厦华集团、灿坤股份、NEC东金电子、太原钢铁集团、PHILIPS、深圳开发科技、大冷王运输制冷、三洋华强、TCL、EPSON、长安福特、泰科电子、长城计算机等知名企业提供项目辅导或专题培训。王老师授课经验丰富,风格幽默诙谐、逻辑清晰、过程互动,案例生动、深受学员喜爱</font></span></span><span lang="EN-US" style="font-size:9.0pt;letter-spacing:0pt" class="9p1"><font size="2">。</font></o:p> </span> </p></td> </tr> </table> </div> <div align="center"> <table width="667" border="0" cellpadding="0" cellspacing="0" height="60"> <tr> <td width="111" height="26" bgcolor="#0080C0" class="td"> <div align="center"><font color="#FFFFFF">[时间/地点/报名]</font></div></td> <td width="552" class="td" height="26"> </td> </tr> <tr> <td height="34" colspan="2" class="td" width="665"> <p><font size="2"><b><font color="#BF0000">时间</font><font color="#000000">: </font></b><font color="#000000"> 8</font>月26-27日(周六/日) <b><font color="#BF0000"> 地点</font><font color="#000000">:</font></b> 苏州 1800元/人 <font color="#BF0000"> </font>四人以上参加,赠予一名名额</font> </p> </td> </tr> </table> </div> <table width="99%" height="32" border="0" align="center" cellpadding="0" cellspacing="0"> <tr> <td height="12" class="td"> <font size="2"><b><font color="#BF0000">报名/咨询</font><font color="#000000">:</font></b> 谢小姐 021-51187126 注: 如您需要订退,请将邮箱发送至: ts...@to...</font></td> </tr> </table> </td> </tr> </table> </body> </html> |
From: David G. <dav...@gm...> - 2006-08-14 06:33:57
|
Could this http://oubiwann.blogspot.com/2006/08/python-and-kcachegrind.html lead to line-by-line profiling with numpy functions? Dave On 7/26/06, David Grant <dav...@gm...> wrote: > > Does anyone know if this issue related to profiling with numpy is a python > problem or a numpy problem? > > Dave > > > On 7/20/06, David Grant < dav...@gm...> wrote: > > > > > > > > On 7/20/06, Arnd Baecker <arn...@we... > wrote: > > > > > > > > > More importantly note that profiling in connection > > > with ufuncs seems problematic: > > > > > > Yes, that seems to be my problem... I read the threads you provided > > links to. Do you know why this is the case? > > > > I have tried hotshot2calltree by the way, and I didn't find out anything > > new. > > > > -- > > David Grant > > > > > > -- > David Grant > -- David Grant http://www.davidgrant.ca |
From: Sebastian H. <ha...@ms...> - 2006-08-14 00:28:41
|
SORRY FOR THE CONFUSION !! I must have been on drugs ! Maybe I did not get enough sleep. asarray() is the function that does not create a copy - both in numpy and in numarray. Sorry, Sebastian Travis Oliphant wrote: > Sebastian Haase wrote: >> Hi, >> I just wanted to point out that the default of the copy argument changed >> from numpy to numarray. >> Don't forget about that in the conversion script ... >> > > Hmm.. I don't see what you are talking about. The default for the copy > argument in the array function is still copy=True. If there is > something else then it is a bug. > > -Travis > > > ------------------------------------------------------------------------- > Using Tomcat but need to do more? Need to support web services, security? > Get stuff done quickly with pre-integrated technology to make your job easier > Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo > http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642 > _______________________________________________ > Numpy-discussion mailing list > Num...@li... > https://lists.sourceforge.net/lists/listinfo/numpy-discussion |
From: Travis O. <oli...@ie...> - 2006-08-13 23:07:18
|
Sebastian Haase wrote: > Hi, > I just wanted to point out that the default of the copy argument changed > from numpy to numarray. > Don't forget about that in the conversion script ... > Hmm.. I don't see what you are talking about. The default for the copy argument in the array function is still copy=True. If there is something else then it is a bug. -Travis |
From: Sebastian H. <ha...@ms...> - 2006-08-13 22:50:09
|
Hi, I just wanted to point out that the default of the copy argument changed from numpy to numarray. Don't forget about that in the conversion script ... Cheers, Sebastian Haase |
From: Travis O. <oli...@ie...> - 2006-08-13 21:35:03
|
John Hunter wrote: > I was surprised to see that numarray.mlab.cov is returning a rank-0 > complex number when given two 1D arrays as inputs rather than the > standard 2x2 covariance array I am used to seeing. Is this a feature > or a bug? > This was the old behavior of the Numeric cov function which numarray borrowed. We changed the behavior of cov in NumPy because it makes more sense to return the full covariance matrix in this case. -Travis |
From: Travis O. <oli...@ie...> - 2006-08-13 21:33:31
|
John Hunter wrote: > I was surprised to see that numarray.mlab.cov is returning a rank-0 > complex number when given two 1D arrays as inputs rather than the > standard 2x2 covariance array I am used to seeing. Is this a feature > or a bug? > > > In [2]: import numarray.mlab as nam > > In [3]: x = nam.rand(10) > > In [4]: y = nam.rand(10) > > In [5]: nam.cov(x, y) > Out[5]: array((0.014697855954587828+0j)) > > In [6]: import numpy.oldnumeric.mlab as npm > > In [7]: x = npm.rand(10) > > In [8]: y = npm.rand(10) > > In [9]: npm.cov(x, y) > Out[9]: > array([[ 0.13243082, 0.0520454 ], > [ 0.0520454 , 0.07435816]]) > > In [10]: import numarray > > In [11]: numarray.__version__ > Out[11]: '1.3.3' > > In [12]: import numpy > > In [13]: numpy.__version__ > Out[13]: '1.0b2.dev2999' > > ------------------------------------------------------------------------- > Using Tomcat but need to do more? Need to support web services, security? > Get stuff done quickly with pre-integrated technology to make your job easier > Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo > http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642 > _______________________________________________ > Numpy-discussion mailing list > Num...@li... > https://lists.sourceforge.net/lists/listinfo/numpy-discussion > |
From: John H. <jdh...@ac...> - 2006-08-13 20:13:52
|
I was surprised to see that numarray.mlab.cov is returning a rank-0 complex number when given two 1D arrays as inputs rather than the standard 2x2 covariance array I am used to seeing. Is this a feature or a bug? In [2]: import numarray.mlab as nam In [3]: x = nam.rand(10) In [4]: y = nam.rand(10) In [5]: nam.cov(x, y) Out[5]: array((0.014697855954587828+0j)) In [6]: import numpy.oldnumeric.mlab as npm In [7]: x = npm.rand(10) In [8]: y = npm.rand(10) In [9]: npm.cov(x, y) Out[9]: array([[ 0.13243082, 0.0520454 ], [ 0.0520454 , 0.07435816]]) In [10]: import numarray In [11]: numarray.__version__ Out[11]: '1.3.3' In [12]: import numpy In [13]: numpy.__version__ Out[13]: '1.0b2.dev2999' |
From: Todd M. <jm...@st...> - 2006-08-13 12:59:09
|
Francesc Altet wrote: > A Dissabte 12 Agost 2006 14:37, Todd Miller va escriure: > >> I agree with all of Travis' comments below and committed the suggested >> changes to numarray CVS. I found one other numarray change needed >> for Francesc's examples to run (apparently) leak-free: >> >> Py_INCREF(obj) >> Py_XDECREF(a->base) >> a->base = obj >> Py_DECREF(cobj) >> >> Thanks Travis! >> > > Hey! I checked this morning Travis' patch and seems to work well for me. I'll > add yours as well later on and see... BTW, where exactly I've to add the > above lines? > The lines above are a modification to Travis' patch, so basically the same place: ******* a = NA_FromDimsStridesTypeAndData(arrayif->nd, shape, strides, t, arrayif->data); if (!a) goto _fail; ! a->base = cobj; return a; ------- a = NA_FromDimsStridesTypeAndData(arrayif->nd, shape, strides, t, arrayif->data); if (!a) goto _fail; ! Py_INCREF(obj); ! Py_XDECREF(a->base); ! a->base = obj; ! Py_DECREF(cobj); return a; Todd |
From: <fg...@to...> - 2006-08-13 09:06:59
|
<html> <head> <meta http-equiv="Content-Type" content="text/html; charset=gb2312"> <title>无标题文档</title> <style type="text/css"> <!-- .td { font-size: 12px; color: #313131; line-height: 20px; font-family: "Arial", "Helvetica", "sans-serif"; } --> </style> </head> <body leftmargin="0" background="http://bo.sohu.com//images/img20040502/dj_bg.gif"> <table width="100%" border="0" cellspacing="0" cellpadding="0"> <tr> <td height="31" background="http://igame.sina.com.cn/club/images/topmenu/topMenu_8.gif" class="td"><div align="center"><font color="#FFFFFF">主办单位:易腾企业管理咨询有限公司</font></div></td> </tr> </table> <br> <table width="673" border="0" align="center" cellpadding="0" cellspacing="0"> <tr> <td height="62" bgcolor="#8C8C8C"> <div align="center"> <table width="100%" border="0" cellspacing="1" cellpadding="0" height="69"> <tr> <td height="67" bgcolor="#F3F3F3"><div align="center"><font lang="ZH-CN" color="#FF0000" size="6"><b>生产一线主管技能提升</b></font></div></td> </tr> </table> </div></td> </tr> </table> <table width="673" border="0" align="center" cellpadding="0" cellspacing="0" class="td" height="1411"> <tr> <td height="1415" bgcolor="#FFFFFF"> <div align="center"> <table width="99%" border="0" cellspacing="0" cellpadding="0"> <tr> <td width="17%" height="20" bgcolor="#BF0000" class="td"> <div align="center"><font color="#FFFFFF">[课 程 背 景]</font></div></td> <td width="83%" class="td"> </td> </tr> <tr> <td height="74" colspan="2" class="td"> <p ALIGN="JUSTIFY"><font LANG="ZH-CN"> </font><font lang="ZH-CN" size="2"> </font><font lang="ZH-CN" size="2"><span style="mso-bidi-font-size: 9.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">对于很多的班组长来讲,从优秀的技术工人走向基层管理岗位,很多时候不得不面对:<br> 1、上级骂、下属怨,生产现场一天忙的脚朝天,现场管理依然乱糟糟....<br> 2、生产任务完不成找我,员工有情绪找我,效率、质量搞不好也找我...<br> 3、手下一管就是几十号人,做事我行,管人、带人,让这群人顺顺畅畅完成工作可就...<br> 4、你说一套,他做另外一套,他觉得他的方法还比你好,怎么个教法?<br> 5、生产线变化频繁,会这个,不会那个,人一堆,岗位却常常缺人手,怎么办?<br> 6、大错不犯,小错不断,员工老是违反纪律,怎么让员工改正?<br> 7、表现不好,说他几句,表面应承,后面跟你对着干,怎么让员工接受主管的意见?<br> 8、愣头青、老油条、刺儿头如何管,如何带?<br> 9、发生问题,主管总是最后一个知道信息,怎么跟员工沟通,让员工有效配合工作?<br> 10、我们基层主管既决定不了员工薪水,也决定不了公司环境,怎么激励手下这些人?<br> 11、生产现场我们也想搞好,可就是难以有效发现问题,在生产现场怎样培养问题意识?<br> 12、一天到晚都在处理问题,可是很多时候还是头痛医头,脚痛医脚,怎么办?<br> 一流的工厂都拥有一流的制造现场--持续提高效率、不断降低制造成本:一流的主管培养训练了一流的员工,一流员工创造了一流的现场!优秀的一线主管不仅有扎实的技术操作能力,而且有着丰富的解决问题、管理团队的"软"技能!调查显示我国大多制造企业的事实是:企业中许多承担管理职能的一线主管,大多只发挥了"技术能手"的作用,多数都是"球星出身",而没有发挥"一线教练"的作用,没能带出一个出色的团队! 如何从"技术操作型能手"转变为"一线教练型能手"--欢迎您参加本期生产管理技能培训!<br> 参加对象: 班组长、技术员</span></font></td> </tr> </table> </div> <div align="center" style="width: 671; height: 1"> </div> <div align="center"> <table width="99%" height="84" border="0" cellpadding="0" cellspacing="0"> <tr> <td width="17%" height="20" bgcolor="#0080C0" class="td"> <div align="center"><font color="#FFFFFF">[课 程 大 纲]</font></div></td> <td width="83%" class="td"> </td> </tr> <tr> <td height="64" colspan="2" class="td"> <p><font size="2"><font color="#0000FF">第一篇 班组长的角色认知及其素养</font><br> 一、班组长的角色认知<br> 班组长的地位和使命<br> 班组长的重要作用<br> 班组长的素质要求<br> 认识企业管理中的各种角色<br> 角色认知--对自己和环境的分析<br> 二、班组长应学习的团队管理和沟通技术<br> 如何实施有效的信息传递<br> 如何与上级、同级沟通<br> 现场团队建设与职场沟通<br> 如何领导不同个性的人<br> 沟通游戏:学会沟通技巧<br> 团队冲突的原因分析<br> 如何提升团队战斗力<br> 三、班组成本分析与目标管理<br> 如何分析分解各项管理指标<br> 如何制定目标<br> 如何组织实施并达成目标<br> <br> <font color="#0000FF">第二篇 班组长应备的管理技能</font><br> 一、如何进行工作汇报<br> 工作汇报的含义及其方式<br> 工作汇报的主要内容<br> 工作汇报的具体要求<br> 二、如何管理下属<br> 了解下属的期望值<br> 如何化解下属的矛盾<br> 如何对待非正式群体<br> 如何批评下属<br> 三、工作教导与员工绩效改善<br> 工作现场经常出现的问题<br> 何时需要工作教导<br> 员工绩效不良的原因分析<br> 如何教导下属改善绩效<br> 讨论:培训下属误区分析<br> 提高OJT培训效果的秘诀<br> 工作教导四阶段 <br> 使用"现场多技能管理表"<br> 演练:改变下属不良行为<br> <br> <font color="#0000FF">第三篇 如何组织实施品质和效率改善</font><br> 一、工作改善的思路与方法 <br> 现场工作改善的基础:5S与目视管理<br> 工作改善基本原则和着眼点<br> 工作改善的基本方法和工具<br> 现场防呆管理(Poka Yoke)<br> 现场安全管理与改善<br> 演练:应用头脑风暴法改善工作<br> 二、发掘问题与解决问题的能力<br> 发掘问题与解决问题是企业发展的内在动力<br> 面对问题的心态<br> 面对复杂的工作--如何突破困境<br> 问题分析与解决"正确之程序<br> 案例:丰田公司解决问题的思维模式<br> 三、现场品质管理<br> 生产过程中品质如何来控制<br> 出现品质异常时如何来处理<br> 品质信息的反馈、跟进、与处理<br> 如何开展QCC品管圈活动<br> 案例:GE是如何实践"品质至上"<br> 四、IE现场改善<br> 现场改善是成本降低的基础 <br> IE现场改善方法<br> 如何挖掘成本浪费所在 <br> 如何清除人员的浪费<br> 如何降低材料损耗直接之成本<br> 改善生产工艺、提升效率、达至降低成本<br> 案例:丰田汽车JIT精益生产实际案例</font> </p></td> </tr> </table> <table width="99%" height="84" border="0" cellpadding="0" cellspacing="0"> <tr> <td width="17%" height="20" bgcolor="#0080C0" class="td"> <div align="center"><font color="#FFFFFF">[导 师 简 介]</font></div></td> <td width="83%" class="td"> </td> </tr> <tr> <td height="64" colspan="2" class="td"> <p><span style="font-size:9.0pt; font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family: "Times New Roman";letter-spacing:0pt" class="9p1"> </span><span style="letter-spacing: 0pt" class="9p1"><font size="2"> </font><span style="letter-spacing: 0pt"><font color="#FF0000" size="3">Mr Wang</font><font size="2">,<font color="#FF0000">管理工程硕士、高级经济师,6SIGMA黑带,国际职业培训师协会认证职业培训师。</font>王先生长期推行工业工程、精益生产等先进运作方式,历任大型跨国公司生产负责人、工业工程经理、项目总监,王老师主要从事生产计划与物料控制、IE技术应用、成本控制、价值工程的讲授,先后为IBM、TDK、松下、可口可乐、康师傅、汇源果汁、雪津啤酒、吉百利食品、冠捷电子、INTEX明达塑胶、正新橡胶、美国ITT集团、广上科技、美的空调、中兴通讯、京信通信,联想电脑,应用材料(中国)公司、艾克森-金山石化、中国化工进出口公司、正大集团大福饲料、厦华集团、灿坤股份、NEC东金电子、太原钢铁集团、PHILIPS、深圳开发科技、大冷王运输制冷、三洋华强、TCL、EPSON、长安福特、泰科电子、长城计算机等知名企业提供项目辅导或专题培训。王老师授课经验丰富,风格幽默诙谐、逻辑清晰、过程互动,案例生动、深受学员喜爱</font></span></span><span lang="EN-US" style="font-size:9.0pt;letter-spacing:0pt" class="9p1"><font size="2">。</font></o:p> </span> </p></td> </tr> </table> </div> <div align="center"> <table width="667" border="0" cellpadding="0" cellspacing="0" height="60"> <tr> <td width="111" height="26" bgcolor="#0080C0" class="td"> <div align="center"><font color="#FFFFFF">[时间/地点/报名]</font></div></td> <td width="552" class="td" height="26"> </td> </tr> <tr> <td height="34" colspan="2" class="td" width="665"> <p><font size="2"><b><font color="#BF0000">时间</font><font color="#000000">: </font></b><font color="#000000"> 8</font>月26-27日(周六/日) <b><font color="#BF0000"> 地点</font><font color="#000000">:</font></b> 苏州 1800元/人 <font color="#BF0000"> </font>四人以上参加,赠予一名名额</font> </p> </td> </tr> </table> </div> <table width="99%" height="32" border="0" align="center" cellpadding="0" cellspacing="0"> <tr> <td height="12" class="td"> <font size="2"><b><font color="#BF0000">报名/咨询</font><font color="#000000">:</font></b> 谢小姐 021-51187126 注: 如您需要订退,请将邮箱发送至: ts...@to...</font></td> </tr> </table> </td> </tr> </table> </body> </html> |
From: Sven S. <sve...@gm...> - 2006-08-12 21:35:48
|
Sven Schreiber schrieb: > Hi, > notice the (confusing, imho) different defaults for the axis of the > following related functions: > > nansum(a, axis=-1) > Sum the array over the given axis, treating NaNs as 0. > > sum(x, axis=None, dtype=None) > Sum the array over the given axis. The optional dtype argument > is the data type for intermediate calculations. > > > average(a, axis=0, weights=None, returned=False) > average(a, axis=0, weights=None, returned=False) > > Average the array over the given axis. If the axis is None, average > over all dimensions of the array. Equivalent to a.mean(axis), but > with a default axis of 0 instead of None. > >>>> numpy.__version__ > '1.0b2.dev2973' > > Shouldn't those kind of functions have the same default behavior? So is > this a bug or am I missing something? > > Thanks for enlightenment, > Sven > Perhaps this is useful for others, so I'll share my self-enlightenment (please correct me if I got it wrong): - sum's axis=None default actually conforms to what's in the numpy 1.0 release notes (functions that match methods should also get their default, which for such methods is axis=None) - nansum's axis=-1 default is normal for functions which don't match equivalent methods - However, I still don't understand why then average() doesn't have axis=-1 as its default like other functions...? Apparently the axis=0 default of average() is its main feature, explaining its existence vis-à-vis .mean. But that seems inconsistent to me, as it breaks all the rules: It doesn't conform to the standard axis=-1 default for functions, and if it's viewed as equivalent to the .mean method (which it is), it doesn't conform to the rule that it should share the latter's default axis=None. So imho it seems like there's no real use for average() other than creating confusion. (Well that sounds a bit too strong, but anyway...) I therefore suggest to officially deprecate it and move it to some compatibility module. I'm going to file a corresponding ticket tomorrow unless somebody tells me not to. Cheers, Sven |
From: David M. C. <co...@ph...> - 2006-08-12 18:28:27
|
On Sat, Aug 12, 2006 at 11:27:07AM -0500, John Hunter wrote: > > Just tried to build svn 2999 on OSX 10.3 w/ python2.3 and encountered > a bug in numpy/core/setup.py on line 102 > > if sys.version[:3] < '2.4': > #kws_args['headers'].append('stdlib.h') > if check_func('strtod'): > moredefs.append(('PyOS_ascii_strtod', 'strtod')) > > I've commented out the kws_args because it is not defined in this > function. Appeared to build fine w/o it. Whoops, missed that one. Fixed in svn. -- |>|\/|< /--------------------------------------------------------------------------\ |David M. Cooke http://arbutus.physics.mcmaster.ca/dmc/ |co...@ph... |
From: John H. <jdh...@ac...> - 2006-08-12 16:38:39
|
Just tried to build svn 2999 on OSX 10.3 w/ python2.3 and encountered a bug in numpy/core/setup.py on line 102 if sys.version[:3] < '2.4': #kws_args['headers'].append('stdlib.h') if check_func('strtod'): moredefs.append(('PyOS_ascii_strtod', 'strtod')) I've commented out the kws_args because it is not defined in this function. Appeared to build fine w/o it. JDH |
From: Francesc A. <fa...@ca...> - 2006-08-12 15:54:01
|
A Dissabte 12 Agost 2006 14:37, Todd Miller va escriure: > I agree with all of Travis' comments below and committed the suggested > changes to numarray CVS. I found one other numarray change needed > for Francesc's examples to run (apparently) leak-free: > > Py_INCREF(obj) > Py_XDECREF(a->base) > a->base =3D obj > Py_DECREF(cobj) > > Thanks Travis! Hey! I checked this morning Travis' patch and seems to work well for me. I'= ll=20 add yours as well later on and see... BTW, where exactly I've to add the=20 above lines? Many thanks Travis and Todd. You are great! =2D-=20 >0,0< Francesc Altet =A0 =A0 http://www.carabos.com/ V V C=E1rabos Coop. V. =A0=A0Enjoy Data "-" |
From: Todd M. <jm...@st...> - 2006-08-12 12:36:57
|
I agree with all of Travis' comments below and committed the suggested changes to numarray CVS. I found one other numarray change needed for Francesc's examples to run (apparently) leak-free: Py_INCREF(obj) Py_XDECREF(a->base) a->base = obj Py_DECREF(cobj) Thanks Travis! Regards, Todd Travis Oliphant wrote: > Francesc Altet wrote: > >> Hi, >> >> I was tracking down a memory leak in PyTables and it boiled down to a problem >> in the array protocol. The issue is easily exposed by: >> >> for i in range(1000000): >> numarray.array(numpy.zeros(dtype=numpy.float64, shape=3)) >> >> and looking at the memory consumption of the process. The same happens with: >> >> for i in range(1000000): >> numarray.asarray(numpy.zeros(dtype=numpy.float64, shape=3)) >> >> However, the numpy<--numarray sense seems to work well. >> >> for i in range(1000000): >> numpy.array(numarray.zeros(type="Float64", shape=3)) >> >> Using numarray 1.5.1 and numpy 1.0b1 >> >> I think this is a relatively important problem, because it somewhat prevents a >> smooth transition from numarray to NumPy. >> >> >> > > I tracked the leak to the numarray function > > NA_FromDimsStridesDescrAndData > > This function calls NA_NewAllFromBuffer with a brand-new buffer object > when data is passed in (like in the case with the array protocol). That > function then takes a reference to the buffer object but then the > calling function never releases the reference it already holds. This > creates the leak. > > I added the line > > if (data) {Py_DECREF(buf);} > > right after the call to NA_NewAllFromBuffer and the leak disappeared. > > For what it's worth, I also think the base object for the new numarray > object should be the object passed in and not the C-object that is > created from it. > > In other words in the NA_FromArrayStruct function > > a->base = cobj > > should be replaced with > > Py_INCREF(obj) > a->base = obj > Py_DECREF(cobj) > > > Best, > > > -Travis > > > > > > > ------------------------------------------------------------------------- > Using Tomcat but need to do more? Need to support web services, security? > Get stuff done quickly with pre-integrated technology to make your job easier > Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo > http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642 > _______________________________________________ > Numpy-discussion mailing list > Num...@li... > https://lists.sourceforge.net/lists/listinfo/numpy-discussion > |
From: Todd M. <jm...@st...> - 2006-08-12 11:05:13
|
Travis Oliphant wrote: > As far as numpy knows this is all it's supposed to do. This seems to > indicate that something is going on inside numarray.array(a) > > because once you had that line to the loop, memory consumption shows up. > > In fact, you can just add the line > > a = _numarray._array_from_array_struct(a) > This does demonstrate a huge leak I'll look into. Thanks. Regards, Todd |