/*--------------------------------------------------------------------
This source distribution is placed in the public domain by its author,
Jason Papadopoulos. You may use it for any purpose, free of charge,
without having to notify anyone. I disclaim any responsibility for any
errors.
Optionally, please be nice and tell me if you find this source to be
useful. Again optionally, if you add to the functionality present here
please consider making those additions public too, so that others may
benefit from your work.
$Id$
--------------------------------------------------------------------*/
#include <mp_int.h>
#include <ap.h>
/*---------------------------------------------------------------*/
static void ap_check_nwords(ap_t *a, uint32 nwords) {
if (a->num_alloc < nwords) {
a->num_alloc = nwords + 100;
a->val = (uint32 *)xrealloc(a->val, a->num_alloc *
sizeof(uint32));
}
}
/*---------------------------------------------------------------*/
void ap_copy(ap_t *src, ap_t *dest) {
if (src == dest)
return;
ap_check_nwords(dest, src->nwords);
memcpy(dest->val, src->val, src->nwords * sizeof(uint32));
dest->nwords = src->nwords;
dest->sign = src->sign;
}
/*---------------------------------------------------------------*/
void ap_mp2ap(mp_t *src, uint32 sign, ap_t *dest) {
if (mp_is_zero(src)) {
dest->nwords = 0;
dest->sign = POSITIVE;
return;
}
ap_check_nwords(dest, src->nwords);
memcpy(dest->val, src->val, src->nwords * sizeof(uint32));
dest->nwords = src->nwords;
dest->sign = sign;
}
/*---------------------------------------------------------------*/
void ap_si2ap(uint32 i, uint32 sign, ap_t *dest) {
if (i == 0) {
dest->nwords = 0;
dest->sign = POSITIVE;
return;
}
ap_check_nwords(dest, 1);
dest->val[0] = i;
dest->nwords = 1;
dest->sign = sign;
}
/*---------------------------------------------------------------*/
uint32 ap_bits(ap_t *a) {
uint32 i, bits, mask, top_word;
if (ap_is_zero(a))
return 0;
i = a->nwords;
bits = 32 * i;
top_word = a->val[i - 1];
#if defined(GCC_ASM32X) || defined(GCC_ASM64X)
ASM_G("bsrl %1, %0": "=r"(mask) : "rm"(top_word) : "cc");
bits -= 31 - mask;
#else
mask = 0x80000000;
if ((top_word >> 16) == 0) {
mask = 0x8000;
bits -= 16;
}
while ( !(top_word & mask) ) {
bits--;
mask >>= 1;
}
#endif
return bits;
}
/*---------------------------------------------------------------*/
static void ap_add_abs(ap_t *a, ap_t *b, ap_t *sum) {
/* a->nwords is assumed >= b->nwords */
uint32 min_words, max_words;
uint32 i;
uint32 carry = 0;
uint32 acc;
max_words = a->nwords;
min_words = b->nwords;
ap_check_nwords(sum, max_words + 1);
for (i = 0; i < min_words; i++) {
acc = a->val[i] + carry;
carry = (acc < a->val[i]);
sum->val[i] = acc + b->val[i];
carry += (sum->val[i] < acc);
}
for (; i < max_words; i++) {
acc = a->val[i] + carry;
carry = (acc < a->val[i]);
sum->val[i] = acc;
}
if (carry)
sum->val[i++] = carry;
sum->nwords = num_nonzero_words(sum->val, i);
}
/*---------------------------------------------------------------*/
static void ap_sub_abs(ap_t *a, ap_t *b, ap_t *diff) {
/* a->nwords is assumed >= b->nwords */
uint32 min_words, max_words;
uint32 i;
uint32 borrow = 0;
uint32 acc;
max_words = a->nwords;
min_words = b->nwords;
ap_check_nwords(diff, max_words);
for (i = 0; i < min_words; i++) {
acc = a->val[i] - borrow;
borrow = (acc > a->val[i]);
diff->val[i] = acc - b->val[i];
borrow += (diff->val[i] > acc);
}
for (; i < max_words; i++) {
acc = a->val[i] - borrow;
borrow = (acc > a->val[i]);
diff->val[i] = acc;
}
diff->nwords = num_nonzero_words(diff->val, max_words);
}
/*---------------------------------------------------------------*/
void ap_add(ap_t *a, ap_t *b, ap_t *sum) {
if (ap_is_zero(a)) {
ap_copy(b, sum);
return;
}
if (ap_is_zero(b)) {
ap_copy(a, sum);
return;
}
switch(2 * a->sign + b->sign) {
case 2*POSITIVE + POSITIVE:
case 2*NEGATIVE + NEGATIVE:
if (ap_cmp_abs(a, b) >= 0)
ap_add_abs(a, b, sum);
else
ap_add_abs(b, a, sum);
sum->sign = a->sign;
break;
case 2*POSITIVE + NEGATIVE:
if (ap_cmp_abs(a, b) >= 0) {
ap_sub_abs(a, b, sum);
sum->sign = POSITIVE;
}
else {
ap_sub_abs(b, a, sum);
sum->sign = NEGATIVE;
}
break;
case 2*NEGATIVE + POSITIVE:
if (ap_cmp_abs(a, b) > 0) {
ap_sub_abs(a, b, sum);
sum->sign = NEGATIVE;
}
else {
ap_sub_abs(b, a, sum);
sum->sign = POSITIVE;
}
break;
}
}
/*---------------------------------------------------------------*/
void ap_sub(ap_t *a, ap_t *b, ap_t *diff) {
if (ap_is_zero(a)) {
ap_copy(b, diff);
diff->sign = b->sign ^ 1;
return;
}
if (ap_is_zero(b)) {
ap_copy(a, diff);
return;
}
switch(2 * a->sign + b->sign) {
case 2*POSITIVE + POSITIVE:
if (ap_cmp_abs(a, b) >= 0) {
ap_sub_abs(a, b, diff);
diff->sign = POSITIVE;
}
else {
ap_sub_abs(b, a, diff);
diff->sign = NEGATIVE;
}
break;
case 2*NEGATIVE + NEGATIVE:
if (ap_cmp_abs(a, b) > 0) {
ap_sub_abs(a, b, diff);
diff->sign = NEGATIVE;
}
else {
ap_sub_abs(b, a, diff);
diff->sign = POSITIVE;
}
break;
case 2*POSITIVE + NEGATIVE:
case 2*NEGATIVE + POSITIVE:
if (ap_cmp_abs(a, b) >= 0)
ap_add_abs(a, b, diff);
else
ap_add_abs(b, a, diff);
diff->sign = a->sign;
break;
}
}
/*---------------------------------------------------------------*/
void ap_rshift(ap_t *a, uint32 shift, ap_t *res) {
int32 i;
int32 words = a->nwords;
int32 start_word = shift / 32;
uint32 word_shift = shift & 31;
uint32 comp_word_shift = 32 - word_shift;
if (start_word > words) {
res->nwords = 0;
res->sign = POSITIVE;
return;
}
ap_check_nwords(res, (uint32)(words - start_word));
if (word_shift == 0) {
for (i = 0; i < (words-start_word); i++)
res->val[i] = a->val[start_word+i];
}
else {
for (i = 0; i < (words-start_word-1); i++) {
res->val[i] = a->val[start_word+i] >> word_shift |
a->val[start_word+i+1] << comp_word_shift;
}
res->val[i] = a->val[start_word+i] >> word_shift;
}
res->nwords = num_nonzero_words(res->val, (uint32)(words - start_word));
res->sign = a->sign;
}
/*---------------------------------------------------------------*/
void ap_lshift(ap_t *a, uint32 shift, ap_t *res) {
int32 i;
uint32 words = a->nwords;
uint32 start_word = shift / 32;
uint32 word_shift = shift & 31;
uint32 comp_word_shift = 32 - word_shift;
if (ap_is_zero(a)) {
res->nwords = 0;
res->sign = POSITIVE;
return;
}
ap_check_nwords(res, (uint32)(words + start_word + 1));
if (word_shift == 0) {
res->val[words + start_word] = 0;
for (i = words - 1; (int32)i >= 0; i--)
res->val[start_word + i] = a->val[i];
}
else {
res->val[words + start_word] =
a->val[words - 1] >> comp_word_shift;
for (i = words - 1; i; i--) {
res->val[start_word + i] = a->val[i] << word_shift |
a->val[i-1] >> comp_word_shift;
}
res->val[start_word + i] = a->val[i] << word_shift;
}
memset(res->val, 0, start_word * sizeof(uint32));
res->nwords = num_nonzero_words(res->val, words + start_word + 1);
res->sign = a->sign;
}
/*---------------------------------------------------------------*/
static void ap_addmul_1(uint32 *a, uint32 awords, uint32 b, uint32 *x) {
uint32 carry = 0;
#if defined(GCC_ASM32A)
uint32 tmp = awords;
ASM_G(
"negl %0 \n\t"
"jz 1f \n\t"
"0: \n\t"
"movl (%2,%0,4), %%eax \n\t"
"mull %4 \n\t"
"addl %1, %%eax \n\t"
"adcl $0, %%edx \n\t"
"addl %%eax, (%3,%0,4) \n\t"
"movl %%edx, %1 \n\t"
"adcl $0, %1 \n\t"
"addl $1, %0 \n\t"
"jnz 0b \n\t"
"1: \n\t"
: "+r"(tmp), "+r"(carry)
: "r"(a + awords), "r"(x + awords), "m"(b)
: "%eax", "%edx", "cc", "memory");
#elif defined(MSC_ASM32A)
ASM_M
{
push ebx
xor ebx,ebx ; carry
mov ecx,awords ; negative loop count
mov esi,a ; pointer to source
mov edi,x ; pointer to destination
lea esi,[esi+ecx*4]
lea edi,[edi+ecx*4]
neg ecx
jz L1
L0: mov eax,[esi+ecx*4]
mul b
add eax,ebx
adc edx,0
add [edi+ecx*4],eax
mov ebx,edx
adc ebx,0
add ecx,1
jnz L0
mov carry,ebx
L1: pop ebx
}
#elif defined(MSC_ASM64X)
/* TODO: use 64-bit operations (but
check if one 32-bit op is needed) */
ASM_M
{
mov r10,rcx ; entry rcx = *a, rdx = awoords
mov r11,r9 ; r8 = b, r9 = *x
mov rcx,rdx
xor r9,r9 ; carry
lea r10,[r10+rcx*4] ; pointer to source
lea r11,[r11+rcx*4] ; pointer to destination
neg rcx ; note b is in r8 already
jz L1
L0: mov eax,[r10+rcx*4]
mul r8d
add eax,r9d
adc edx,0
add [r11+rcx*4],eax
mov r9d,edx
adc r9d,0
add ecx,1
jnz L0
mov carry,r9d
L1:
}
#else
uint32 i;
uint64 acc;
for (i = 0; i < awords; i++) {
acc = (uint64)a[i] * (uint64)b +
(uint64)carry +
(uint64)x[i];
x[i] = (uint32)acc;
carry = (uint32)(acc >> 32);
}
#endif
x[awords] = carry;
}
/*---------------------------------------------------------------*/
static void ap_addmul(uint32 *a, uint32 awords,
uint32 *b, uint32 bwords,
uint32 *prod) {
/* awords assumed >= bwords */
uint32 i;
for (i = 0; i < bwords; i++)
ap_addmul_1(a, awords, b[i], prod + i);
}
/*---------------------------------------------------------------*/
void ap_mul(ap_t *a, ap_t *b, ap_t *prod, fastmult_info_t *info) {
ap_t *c, *d;
uint32 cwords, dwords, prod_words;
if (ap_is_zero(a) || ap_is_zero(b)) {
prod->nwords = 0;
prod->sign = POSITIVE;
return;
}
if (a->nwords > b->nwords) {
c = a; d = b;
}
else {
c = b; d = a;
}
cwords = c->nwords;
dwords = d->nwords;
prod_words = cwords + dwords;
ap_check_nwords(prod, prod_words);
if (cwords <= FFT_MIN_WORDS) {
uint32 tmp[2 * FFT_MIN_WORDS];
memset(tmp, 0, prod_words * sizeof(uint32));
ap_addmul(c->val, cwords, d->val, dwords, tmp);
memcpy(prod->val, tmp, prod_words * sizeof(uint32));
}
else if (dwords <= FFT_MIN_WORDS) {
uint32 i, j;
uint32 tmp[2 * FFT_MIN_WORDS] = {0};
uint32 tmp_d_val[FFT_MIN_WORDS];
ap_t tmp_d;
uint32 mul_words = MIN(cwords, 2 * FFT_MIN_WORDS - dwords);
if (prod == d) {
tmp_d = *d;
memcpy(tmp_d_val, d->val, dwords * sizeof(uint32));
d = &tmp_d;
d->val = tmp_d_val;
}
for (i = 0; i < cwords - mul_words; i += mul_words) {
ap_addmul(c->val + i, mul_words, d->val, dwords, tmp);
memcpy(prod->val + i, tmp, mul_words * sizeof(uint32));
for (j = 0; j < dwords; j++)
tmp[j] = tmp[j + mul_words];
for (; j < 2 * FFT_MIN_WORDS; j++)
tmp[j] = 0;
}
if (cwords - i < dwords)
ap_addmul(d->val, dwords, c->val + i, cwords - i, tmp);
else
ap_addmul(c->val + i, cwords - i, d->val, dwords, tmp);
memcpy(prod->val + i, tmp,
(cwords - i + dwords) * sizeof(uint32));
}
else {
fastmult(c->val, cwords, d->val, dwords, prod->val, info);
}
prod->nwords = num_nonzero_words(prod->val, prod_words);
prod->sign = c->sign ^ d->sign;
}
/*---------------------------------------------------------------*/
static void ap_mod_1(ap_t *num, ap_t *den, ap_t *res) {
uint32 nwords = num->nwords;
uint32 dwords = den->nwords;
big_mp_t n;
mp_t d, q, r;
ap_check_nwords(res, dwords);
if (dwords == 1) {
res->val[0] = mp_mod_1_core(num->val, nwords, den->val[0]);
res->nwords = (res->val[0]) ? 1 : 0;
res->sign = num->sign;
return;
}
mp_clear(&r);
mp_clear(&d);
d.nwords = dwords;
memcpy(d.val, den->val, dwords * sizeof(uint32));
while (nwords > 0) {
uint32 i;
uint32 chunk = MIN(nwords, MAX_MP_WORDS);
for (i = 0; i < chunk; i++)
n.val[i] = num->val[nwords - chunk + i];
for (i = 0; i < r.nwords; i++)
n.val[chunk + i] = r.val[i];
for (i = chunk + r.nwords; i < 2 * MAX_MP_WORDS; i++)
n.val[i] = 0;
n.nwords = chunk + r.nwords;
mp_divrem_core(&n, &d, &q, &r);
nwords -= chunk;
}
ap_check_nwords(res, dwords);
memcpy(res->val, r.val, dwords * sizeof(uint32));
res->sign = num->sign;
res->nwords = num_nonzero_words(res->val, dwords);
}
/*---------------------------------------------------------------*/
#define NUM_GUARD_BITS 32
void ap_recip(ap_t *a, ap_t *res, uint32 div_bits, fastmult_info_t *info) {
uint32 curr_bits, new_bits;
ap_t r2, a2;
big_mp_t n;
mp_t d, init_q, init_r;
uint32 abits = ap_bits(a);
uint32 prod_bits = abits + div_bits;
/* this is a heavily modified version of the generalized
reciprocal algorithm from Crandall and Pomerance. In
particular:
- the precision is controlled adaptively, so that
the entire reciprocal process has an asymptotic
latency of <= 4 full-precision multiplies
- the iteration process can produce a reciprocal
large enough to divide numbers with up to
(div_bits+bits(a)) bits in one step. C&P specialize
to the case case of prod_bits = 2*bits(a)
*/
memset(&n, 0, sizeof(big_mp_t));
mp_clear(&d);
/* to get the initial approximation for use in the
Newton step, calculate 2^x / (a >> y), where the
numerator and denominator are chosen to be small
enough for the quotient to be computed directly */
curr_bits = MIN(abits, 32 * (MAX_MP_WORDS - 1));
ap_rshift(a, abits - curr_bits, res);
d.nwords = res->nwords;
memcpy(d.val, res->val, d.nwords * sizeof(uint32));
new_bits = MIN(prod_bits, curr_bits + 32 * (MAX_MP_WORDS - 1));
n.nwords = new_bits / 32 + 1;
n.val[n.nwords - 1] = 1 << (new_bits % 32);
/* if x is large enough and y is zero, we have the
answer already */
mp_divrem_core(&n, &d, &init_q, &init_r);
ap_mp2ap(&init_q, POSITIVE, res);
if (new_bits == prod_bits && curr_bits == abits)
return;
/* iterate until log2(answer) == div_bits */
ap_init(&r2);
ap_init(&a2);
while (1) {
/* each iteration will double the number of correct
bits in res. If doubling the precision will produce
more than div_bits correct bits, then reduce the
precision of the answer until doubling will provide
slightly more correct bits than we need */
curr_bits = ap_bits(res);
if (div_bits < 2 * curr_bits - NUM_GUARD_BITS) {
ap_rshift(res, curr_bits -
(div_bits + NUM_GUARD_BITS) / 2, res);
curr_bits = ap_bits(res);
}
/* square the previous answer. The number of bits
in the product will be the new precision level */
ap_mul(res, res, &r2, info);
new_bits = ap_bits(&r2);
/* we have to get (a*res^2 >> new_bits) and
(2 * previous_answer) to the current precision level.
The latter is easy, and just needs a left shift.
The former needs only the high-order bits of 'a'
if the precision is low, or all of 'a' if it is high. */
ap_lshift(res, new_bits - curr_bits + 1, res);
if (abits <= new_bits) {
ap_mul(&r2, a, &r2, info);
}
else {
ap_rshift(a, abits - new_bits, &a2);
ap_mul(&r2, &a2, &r2, info);
}
ap_rshift(&r2, ap_bits(&r2) - new_bits, &r2);
/* compute the next approximation, and if it has
enough bits then we're done */
ap_sub(res, &r2, res);
new_bits = ap_bits(res);
if (div_bits < new_bits) {
ap_rshift(res, new_bits - div_bits - 1, res);
break;
}
}
ap_clear(&r2);
ap_clear(&a2);
}
/*---------------------------------------------------------------*/
void ap_mod(ap_t *num, ap_t *den, ap_t *recip,
ap_t *res, fastmult_info_t *info) {
/* the algorithm is from Crandall and Pomerance, who
cite the Handbook of Applied Cryptography. Note that
we generalize the algorithm from C&P so that
- recip can be *any* size; in particular num can
exceed den*den in size
- the division takes place log2(recip) bits at a time.
This lets calling code deal with huge operands in
chunks of more manageable size
*/
uint32 dbits;
uint32 nbits1, nbits2;
uint32 rbits;
ap_t tmp;
ap_t *curr_num;
if (ap_is_zero(num) || ap_cmp_abs(num, den) == 0) {
res->nwords = 0;
res->sign = POSITIVE;
return;
}
if (ap_cmp_abs(num, den) < 0) {
ap_copy(num, res);
return;
}
if (den->nwords <= MAX_MP_WORDS) {
ap_mod_1(num, den, res);
return;
}
/* perform as many reduction steps as are needed
to get the remainder to the neighborhood of
the correct result */
ap_init(&tmp);
dbits = ap_bits(den);
rbits = ap_bits(recip);
curr_num = num;
nbits1 = ap_bits(curr_num);
do {
/* each iteration removes at most rbits bits from the
numerator. First compute an approximation to
the quotient, using MIN(rbits, bits(curr_num)) bits
of recip and curr_num */
if (nbits1 > rbits) {
ap_rshift(curr_num, nbits1 - rbits, &tmp);
ap_mul(&tmp, recip, &tmp, info);
}
else {
ap_rshift(recip, rbits - nbits1, &tmp);
ap_mul(curr_num, &tmp, &tmp, info);
}
/* compute the high-order bits of the quotient
and multiply by den */
nbits2 = ap_bits(&tmp);
if (nbits2 > nbits1 - dbits) {
ap_rshift(&tmp, nbits2 - (nbits1 - dbits), &tmp);
}
ap_mul(&tmp, den, &tmp, info);
/* compute num - quotient * den. Equalize the
precision before subtracting */
nbits2 = ap_bits(&tmp);
if (nbits2 > nbits1)
ap_rshift(&tmp, nbits2 - nbits1, &tmp);
else
ap_lshift(&tmp, nbits1 - nbits2, &tmp);
ap_sub(curr_num, &tmp, res);
curr_num = res;
nbits1 = ap_bits(curr_num);
} while (nbits1 > dbits + 1);
/* compute the correct result from the approximation */
while (ap_cmp_abs(res, den) >= 0) {
if (res->sign == POSITIVE)
ap_sub(res, den, res);
else
ap_add(res, den, res);
}
ap_clear(&tmp);
}