Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
From: K. Frank <kfrank29.c@gm...>  20110430 15:15:19

Hello Kai! On Sat, Apr 30, 2011 at 5:51 AM, Kai Tietz <ktietz70@...> wrote: > 2011/4/30 Kai Tietz <ktietz70@...>: >> 2011/4/30 Greg Chicares <gchicares@...>: >>> On 20110429 19:55Z, K. Frank wrote: >>>> >>>> By the way, could someone confirm that mingw does use msvcrt for >>>> sqrt and pow? >>> >>> http://cygwin.com/cgibin/cvsweb.cgi/src/winsup/mingw/mingwex/math/?cvsroot=src >>> >>> Looks to me like sqrt(double) calls into msvcrt. But pow() is a >>> different story. Danny implemented it in libmingwex because of >>> some qualityofimplementation problem with msvcrt; then people >>> complained that the libmingwex version was slower, and I can't >>> remember where it wound up, but it's all in the archives. >>> >>>> sqrt (x) and pow (x, 0.5) ought to give the same result (even if not required >>>> to by IEEE754). >>> ... >>> Not so many years ago (perhaps when msvcrt was written), it was >>> thought that correctlyrounded transcendental functions weren't >>> feasible in practice, so library authors had a looser attitude >>> toward exactness. If you have an ideal implementation of sqrt() >>> but a pow() that's only approximate, should you specialcase >>> the power of exactly 0.5? If you do, then pow() and sqrt() will >>> be consistent, but then the powers >>> x^(0.5*(1epsilon)) >>> x^(0.5 ) >>> x^(0.5*(1+epsilon)) >>> might not be monotone. Some would call that a bad tradeoff. >> >> Well, I spent some efforts into log, exp, and pow implementation. Also >> some other basemath functions I improved in mingww64's math library >> in two terms. a) Make those functions behave as ISOC99 specification >> tells in cornercases. and b) Improve accuracy in terms of gcc's >> internal used gmp. As we noticed here result differences. >> >> The following example illustrates the issues pretty well: >> >> #include <stdio.h> >> #include <math.h> >> >> double abc[3][2] = { { 2.2, 3.1 }, { 2.0, 3.0 }, { 4.0, 0.5 } }; >> long double ab[3][2] = { { 2.2L, 3.1L }, { 2.0L, 3.0L }, { 4.0L, 0.5L } }; >> int main() >> { >> double r[3]; >> long double rl[3]; >> int i; >> for (i = 0; i < 3; i++) >> __mingw_printf ("%.20F^%.20F = %.20F\n", abc[i][0], abc[i][1], >> (r[i] = pow (abc[i][0], abc[i][1]))); >> __mingw_printf ("%.20F %.20F %.20F\n", pow (2.2, 3.1), pow (2.0, >> 3.0), pow (4.0, 0.5)); >> r[0] = pow (2.2, 3.1); >> r[1] = pow (2.0, 3.0); >> r[2] = pow (4.0, 0.5); >> __mingw_printf ("%.20F %.20F %.20F\n", r[0], r[1], r[2]); >> >> for (i = 0; i < 3; i++) >> __mingw_printf ("%.20LF^%.20LF = %.20LF\n", ab[i][0], ab[i][1], >> (rl[i] = powl (ab[i][0], ab[i][1]))); >> __mingw_printf ("%.20LF %.20LF %.20LF\n", >> powl (2.2L, 3.1L), powl (2.0L, 3.0L) , powl >> (4.0L, 0.5L)); >> rl[0] = powl (2.2L, 3.1L); >> rl[1] = powl (2.0L, 3.0L); >> rl[2] = powl (4.0L, 0.5L); >> __mingw_printf ("%.20LF %.20LF %.20LF\n", rl[0], rl[1], rl[2]); >> return 1; >> } Do I understand your point correctly that you are comparing gcc's compiletime and runtime values for pow? For the record, when I run this on a mingw64 build: gcc (GCC) 4.5.2 20101002 (prerelease) [svn/rev.164902  mingww64/oz] I get: C:\>gcc o pow_test pow_test.c C:\>pow_test 2.20000000000000017764^3.10000000000000008882 = 11.52153412678571875460 2.00000000000000000000^3.00000000000000000000 = 8.00000000000000000000 4.00000000000000000000^0.50000000000000000000 = 2.00000000000000000000 11.52153412678571697825 8.00000000000000000000 2.00000000000000000000 0.00000000000000177636 0.00000000000000000000 0.00000000000000000000 2.20000000000000000004^3.09999999999999999991 = 11.52153412678571414718 2.00000000000000000000^3.00000000000000000000 = 8.00000000000000000000 4.00000000000000000000^0.50000000000000000000 = 2.00000000000000000000 11.52153412678571414718 8.00000000000000000000 2.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 As I understand it, this means I am seeing a small difference between compile and runtime evaluation only for powl (2.2, 3.1), i.e., the longdouble case. >> The interesting issue is here that gcc uses for constant >> mathcalculations gmplibrary to get result. For more complex >> variants, it uses crt's math. By this it is important for a gcc based >> runtime to be in the IEEE 754 floating point compatible to gmp's >> results. Yes, that's a good point. I hadn't considered the issue of compiletime evaluation, and, ideally, it should agree with runtime evaluation, adding yet another constraint to our wish list. Furthermore, if we take the idea of a crosscompiler seriously, we would also like the compiletime evaluations of a crosscompiler and native compiler to agree. Hmm... So, we would like sqrt (x) and pow (x, 0.5) to agree. We would like compiletime and runtime evaluations to agree. We would like crosscompilers and native compilers to agree. Taken at face value, this would seem to preclude using the platform library and platform hardware to compute things like sqrt and pow (unless we know they comply with some agreedupon standard, such as IEEE754). Just to make the reasoning explicit, if I perform my runtime evaluation on platform A, e.g., using platform A's FPU, then a B>A crosscompiler running on platform B won't have platform A's FPU available to perform consistent compiletime evaluations. So you either give up some of the abovewishedfor consistency, you forgo the potential performance benefits of using the platform's library and / or hardware, or you get everybody to use a common standard. >> ... >> I admit that this might be not that obvious to users, why results here >> are different, but for a gcc based toolchain we need to play nice with >> gcc's internal assumptions. >> >> Regards, >> Kai > > On closer look for long double, we can have rouding issues for long > double precission. I see that powl (0.01L, 0.5L) we have a rounding > difference to sqrtl (0.01L). Interestingly not for float or double > types. So we we might need to specialcase in pow the case for y == > 0.5 to solve this. Be, however, cognizant of Greg's concern. Forcing pow to agree with sqrt just for y = 0.5 has the potential to make pow, in a sense, internally inconsistent, It's a tricky tradeoff. (Ideally, both pow and sqrt would be "exact" and therefore agree with one another automatically.) By the way, I also see a problem with runtime powl for powl (2.2L, 0.5L). It disagrees slightly from sqrtl (2.2L) and from the compiletime value for powl (2.2L, 0.5L). I modified your test program to compare sqrt with pow (x, 0.5) (and sqrtl with powl). For the record: C:\>gcc version gcc (GCC) 4.5.2 20101002 (prerelease) [svn/rev.164902  mingww64/oz] C:\>gcc o sqrt_pow sqrt_pow.c C:\>sqrt_pow 1.04880884817015163080, 1.04880884817015163080, 0.00000000000000000000 1.48323969741913264109, 1.48323969741913264109, 0.00000000000000000000 1.81659021245849494619, 1.81659021245849494619, 0.00000000000000000000 1.04880884817015163080 1.04880884817015163080 1.48323969741913264109 1.48323969741913264109 1.81659021245849494619 1.81659021245849494619 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 1.04880884817015154699, 1.04880884817015154699, 0.00000000000000000000 1.48323969741913258980, 1.48323969741913258970, 0.00000000000000000011 1.81659021245849499921, 1.81659021245849499921, 0.00000000000000000000 1.04880884817015154699 1.04880884817015154699 1.48323969741913258980 1.48323969741913258980 1.81659021245849499921 1.81659021245849499921 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000011 0.00000000000000000000 where sqrt_pow.c is: #include <stdio.h> #include <math.h> double abc[3] = { 1.1, 2.2, 3.3 }; long double abcl[3] = { 1.1L, 2.2L, 3.3L }; int main() { double r1[3], r2[3], r3[3]; long double rl1[3], rl2[3], rl3[3]; int i; for (i = 0; i < 3; i++) __mingw_printf ("%.20F, %.20F, %.20F\n", (r1[i] = sqrt (abc[i])), (r2[i] = pow (abc[i], 0.5)), (r3[i] = pow (abc[i], 0.5)  sqrt (abc[i]))); __mingw_printf ("%.20F %.20F\n", sqrt (1.1), pow (1.1, 0.5)); __mingw_printf ("%.20F %.20F\n", sqrt (2.2), pow (2.2, 0.5)); __mingw_printf ("%.20F %.20F\n", sqrt (3.3), pow (3.3, 0.5)); r1[0] = sqrt (1.1); r1[1] = sqrt (2.2); r1[2] = sqrt (3.3); __mingw_printf ("%.20F %.20F %.20F\n", r1[0], r1[1], r1[2]); r2[0] = pow (1.1, 0.5); r2[1] = pow (2.2, 0.5); r2[2] = pow (3.3, 0.5); __mingw_printf ("%.20F %.20F %.20F\n", r2[0], r2[1], r2[2]); for (i = 0; i < 3; i++) __mingw_printf ("%.20LF, %.20LF, %.20LF\n", (rl1[i] = sqrtl (abcl[i])), (rl2[i] = powl (abcl[i], 0.5L)), (rl3[i] = powl (abcl[i], 0.5L)  sqrtl (abcl[i]))); __mingw_printf ("%.20LF %.20LF\n", sqrtl (1.1L), powl (1.1L, 0.5L)); __mingw_printf ("%.20LF %.20LF\n", sqrtl (2.2L), powl (2.2L, 0.5L)); __mingw_printf ("%.20LF %.20LF\n", sqrtl (3.3L), powl (3.3L, 0.5L)); rl1[0] = sqrtl (1.1L); rl1[1] = sqrtl (2.2L); rl1[2] = sqrtl (3.3L); __mingw_printf ("%.20LF %.20LF %.20LF\n", rl1[0], rl1[1], rl1[2]); rl2[0] = powl (1.1L, 0.5L); rl2[1] = powl (2.2L, 0.5L); rl2[2] = powl (3.3L, 0.5L); __mingw_printf ("%.20LF %.20LF %.20LF\n", rl2[0], rl2[1], rl2[2]); return 1; } > > Kai Thanks, Kai, for your insight and explanations. K. Frank 