|
From: Barton W. <wi...@un...> - 2025-11-13 11:23:31
|
Try setting the option variable solveradcan to true before solving: (%i1) solveradcan : true$ (%i2) solve(n*10^(n-1)=2*n*5^(n-1),n); (%o2) [n=0,n=2] Alternatively, apply radcan before solving: (%i1) radcan(n*10^(n-1)=2*n*5^(n-1)); (%o1) 2^(n-1)*5^(n-1)*n=2*5^(n-1)*n (%i2) solve(%,n); (%o2) [n=0,n=2] For a list of additional option variables (and a bunch of other stuff) that affect how solve works, try (%i3) apropos (solve); (%o3) [desolve,funcsolve,globalsolve,linsolve,linsolve_by_lu,linsolve_params,linsolvewarn,solve,solve_congruences,solvedecomposes,solveexplicit,solvefactors, Solvenullwarn,solveradcan,solvetrigwarn,tmlinsolve,to_poly_solve] Thanks for your interest in Maxima! If you have more questions, feel free to ask. --Barton ________________________________ From: richard christian <rp...@cl...> Sent: Thursday, November 13, 2025 3:57 AM To: max...@li... <max...@li...> Subject: [Maxima-discuss] elementary solve() problem Caution: Non-NU Email Apologies for this very novice question, but what am I doing wrong here? Why isn't Maxima giving n=2? (%i18) s: t**n; (s) t^n (%i19) diff(s,t); (%o19) n*t^(n-1) (%i20) s: t**n; (s) t^n (%i21) diff(s,t); (%o21) n*t^(n-1) (%i23) ev(%,t=10) = 2*ev(%,t=5); (%o23) n*10^(n-1)=2*n*5^(n-1) (%i24) solve(%,n); (%o24) [n=0,10^(n-1)=2*5^(n-1)] Many thanks, Richard _______________________________________________ Maxima-discuss mailing list Max...@li... https://urldefense.com/v3/__https://lists.sourceforge.net/lists/listinfo/maxima-discuss__;!!PvXuogZ4sRB2p-tU!AHGAk7NlanJPbiPzOCvfT6cKkVSALivLV8W_2kJZ_1zbIZSyVluWjP4HKlQV7DKLKiC8HDD9EecjLylJKPE$ |