|
From: rtoy <rt...@us...> - 2025-08-25 15:18:49
|
This is an automated email from the git hooks/post-receive script. It was
generated because a ref change was pushed to the repository containing
the project "Maxima CAS".
The branch, master has been updated
via 6353d6f79bd54696da9072bd166ec83992392d03 (commit)
from 73b8130090553a09c29f11f7d04452c38e73e763 (commit)
Those revisions listed above that are new to this repository have
not appeared on any other notification email; so we list those
revisions in full, below.
- Log -----------------------------------------------------------------
commit 6353d6f79bd54696da9072bd166ec83992392d03
Author: Raymond Toy <toy...@gm...>
Date: Mon Aug 25 08:03:57 2025 -0700
Run update_examples to regenerate examples
This also allows syntax highlighting if enabled.
diff --git a/doc/info/Polynomials.texi b/doc/info/Polynomials.texi
index 87a1f47be..be32c70ad 100644
--- a/doc/info/Polynomials.texi
+++ b/doc/info/Polynomials.texi
@@ -124,7 +124,7 @@ Examples:
@c determinant(%);
@c resultant(a*x+b, c*x^2+d, x);
@c ===end===
-@example
+@example maxima
@group
(%i1) bezout(a*x+b, c*x^2+d, x);
[ b c - a d ]
@@ -166,7 +166,7 @@ Example:
@c is (freeof (x, c) and c[1] # 0))$
@c islinear ((r^2 - (x - r)^2)/x, x);
@c ===end===
-@example
+@example maxima
@group
(%i1) islinear (expr, x) := block ([c],
c: bothcoef (rat (expr, x), x),
@@ -219,7 +219,7 @@ Examples:
@c ===beg===
@c coeff (b^3*a^3 + b^2*a^2 + b*a + 1, a^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) coeff (b^3*a^3 + b^2*a^2 + b*a + 1, a^3);
3
@@ -234,7 +234,7 @@ to @code{coeff(@var{expr}, @var{x}, @var{n})}.
@c coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z, 3);
@c coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) coeff (c[4]*z^4 - c[3]*z^3 - c[2]*z^2 + c[1]*z, z, 3);
(%o1) - c
@@ -253,7 +253,7 @@ which is free of @var{x}.
@c ===beg===
@c coeff (a*u + b^2*u^2 + c^3*u^3, b, 0);
@c ===end===
-@example
+@example maxima
@group
(%i1) coeff (a*u + b^2*u^2 + c^3*u^3, b, 0);
3 3
@@ -271,7 +271,7 @@ comprises an operator and all of its arguments.
@c coeff (sin(1+x)*sin(x) + sin(1+x)^3*sin(x)^3, sin(1+x)^3);
@c coeff ((d - a)^2*(b + c)^3 + (a + b)^4*(c - d), a + b, 4);
@c ===end===
-@example
+@example maxima
@group
(%i1) coeff (h^4 - 2*%pi*h^2 + 1, h, 2);
(%o1) - 2 %pi
@@ -302,7 +302,7 @@ function.
@c factor (b^3*c + 3*a*b^2*c + 3*a^2*b*c + a^3*c);
@c coeff (%, (a + b)^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) coeff (c*(a + b)^3, a);
(%o1) 0
@@ -339,7 +339,7 @@ function.
@c coeff (matrix ([a*x, b*x], [-c*x, -d*x]), x);
@c coeff (a*u - b*v = 7*u + 3*v, u);
@c ===end===
-@example
+@example maxima
@group
(%i1) coeff ([4*a, -3*a, 2*a], a);
(%o1) [4, - 3, 2]
@@ -377,7 +377,7 @@ Examples:
@c ===beg===
@c content (2*x*y + 4*x^2*y^2, y);
@c ===end===
-@example
+@example maxima
@group
(%i1) content (2*x*y + 4*x^2*y^2, y);
2
@@ -404,7 +404,7 @@ See also @mref{num}
@c g2:sin(x)/10*cos(x)/y;
@c denom(g2);
@c ===end===
-@example
+@example maxima
@group
(%i1) g1:(x+2)*(x+1)/((x+3)^2);
(x + 1) (x + 2)
@@ -452,7 +452,7 @@ Examples:
@c divide (x + y, x - y, x);
@c divide (x + y, x - y);
@c ===end===
-@example
+@example maxima
@group
(%i1) divide (x + y, x - y, x);
(%o1) [1, 2 y]
@@ -492,7 +492,7 @@ Example:
@c expr3: z^2 + x - y^2 + 5;
@c eliminate ([expr3, expr2, expr1], [y, z]);
@c ===end===
-@example
+@example maxima
@group
(%i1) expr1: 2*x^2 + y*x + z;
2
@@ -547,7 +547,7 @@ gcd is first calculated with the function @code{gcd} and then with the function
@c gcd(p1, gcd(p2, p3));
@c ezgcd(p1, p2, p3);
@c ===end===
-@example
+@example maxima
@group
(%i1) p1 : 6*x^3-17*x^2+14*x-3;
3 2
@@ -656,7 +656,7 @@ Examples:
@c factor (1 + x^12);
@c factor (1 + x^99);
@c ===end===
-@example
+@example maxima
@group
(%i1) factor (2^63 - 1);
2
@@ -800,7 +800,7 @@ Example:
@c factor(x^100-1);
@c factor(x^101-1);
@c ===end===
-@example
+@example maxima
(%i1) factor_max_degree : 100$
@group
(%i2) factor(x^100-1);
@@ -876,7 +876,7 @@ Example:
@c expand (a*(x+1)*(x-1)*(u+1)^2);
@c factorout(%,x);
@c ===end===
-@example
+@example maxima
@group
(%i1) expand (a*(x+1)*(x-1)*(u+1)^2);
2 2 2 2 2
@@ -911,7 +911,7 @@ Example:
@c expand ((x + 1)*((u + v)^2 + a*(w + z)^2));
@c factorsum (%);
@c ===end===
-@example
+@example maxima
@group
(%i1) expand ((x + 1)*((u + v)^2 + a*(w + z)^2));
2 2 2 2
@@ -974,7 +974,7 @@ Example:
@c fullratsimp (expr);
@c rat (expr);
@c ===end===
-@example
+@example maxima
@group
(%i1) expr: (x^(a/2) + 1)^2*(x^(a/2) - 1)^2/(x^a - 1);
a/2 2 a/2 2
@@ -1039,7 +1039,7 @@ Examples:
@c subst ([a = b, c = d], a + c);
@c lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
@c ===end===
-@example
+@example maxima
@group
(%i1) subst ([a = b, c = d], a + c);
(%o1) d + b
@@ -1057,7 +1057,7 @@ equation may be given as first argument.
@c ===beg===
@c lratsubst (a^2 = b, a^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) lratsubst (a^2 = b, a^3);
(%o1) a b
@@ -1072,7 +1072,7 @@ except that it recurses until its result stops changing.
@c ratsubst (b*a, a^2, a^3);
@c fullratsubst (b*a, a^2, a^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) ratsubst (b*a, a^2, a^3);
2
@@ -1093,7 +1093,7 @@ equation as first argument.
@c fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
@c fullratsubst (a^2 = b*a, a^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) fullratsubst ([a^2 = b, b^2 = c, c^2 = a], a^3*b*c);
(%o1) b
@@ -1111,10 +1111,10 @@ equation as first argument.
@c ===beg===
@c fullratsubst (b*a^2, a^2, a^3), lrats_max_iter=15;
@c ===end===
-@example
+Warning: fullratsubst2(listofeqns,expr): reached maximum iterations of 15 . Increase `lrats_max_iter' to increase this limit.
+@example maxima
@group
(%i1) fullratsubst (b*a^2, a^2, a^3), lrats_max_iter=15;
-Warning: fullratsubst2(listofeqns,expr): reached maximum iterations of 15 . Increase `lrats_max_iter' to increase this limit.
3 15
(%o1) a b
@end group
@@ -1181,7 +1181,7 @@ Example:
@c p1/gcd(p1, p2), ratsimp;
@c p2/gcd(p1, p2), ratsimp;
@c ===end===
-@example
+@example maxima
@group
(%i1) p1:6*x^3+19*x^2+19*x+6;
3 2
@@ -1217,7 +1217,7 @@ the polynomials divided by the greatest common divisor.
@c p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x $
@c ezgcd(p1, p2);
@c ===end===
-@example
+@example maxima
(%i1) p1:6*x^3+19*x^2+19*x+6 $
(%i2) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x $
@group
@@ -1267,7 +1267,7 @@ Examples:
@c gcdex (x^2 + 1, x^3 + 4);
@c % . [x^2 + 1, x^3 + 4, -1];
@c ===end===
-@example
+@example maxima
@group
(%i1) gcdex (x^2 + 1, x^3 + 4);
2
@@ -1288,7 +1288,7 @@ not the @code{y+1} we would expect in @code{k[y, x]}.
@c ===beg===
@c gcdex (x*(y + 1), y^2 - 1, x);
@c ===end===
-@example
+@example maxima
@group
(%i1) gcdex (x*(y + 1), y^2 - 1, x);
1
@@ -1337,7 +1337,7 @@ Example:
@c ===beg===
@c gfactor (x^4 - 1);
@c ===end===
-@example
+@example maxima
@group
(%i1) gfactor (x^4 - 1);
(%o1) (x - 1) (x + 1) (x - %i) (x + %i)
@@ -1387,7 +1387,7 @@ Examples:
@c hipow ((x + y)^5, x + y);
@c hipow (expand ((x + y)^5), x + y);
@c ===end===
-@example
+@example maxima
@group
(%i1) hipow (y^3 * x^2 + x * y^4, x);
(%o1) 2
@@ -1462,7 +1462,7 @@ Examples:
@c rat(x/2.0);
@c rat(x/2.0), keepfloat;
@c ===end===
-@example
+@example maxima
@group
(%i1) rat(x/2.0);
rat: replaced 0.5 by 1/2 = 0.5
@@ -1481,7 +1481,7 @@ rat: replaced 0.5 by 1/2 = 0.5
@c ===beg===
@c solve(1.0-x,x), keepfloat;
@c ===end===
-@example
+@example maxima
@group
(%i1) solve(1.0-x,x), keepfloat;
rat: replaced 1.0 by 1/1 = 1.0
@@ -1504,7 +1504,7 @@ Returns the lowest exponent of @var{x} which explicitly appears in
@c ===beg===
@c lopow ((x+y)^2 + (x+y)^a, x+y);
@c ===end===
-@example
+@example maxima
@group
(%i1) lopow ((x+y)^2 + (x+y)^a, x+y);
(%o1) min(2, a)
@@ -1552,7 +1552,7 @@ Examples:
@c lratsubst ([a = b, c = d], a + c);
@c lratsubst ([a^2 = b, c^2 = d], (a + e)*c*(a + c));
@c ===end===
-@example
+@example maxima
@group
(%i1) lratsubst ([a = b, c = d], a + c);
(%o1) d + b
@@ -1569,7 +1569,7 @@ equation may be given as first argument.
@c ===beg===
@c lratsubst (a^2 = b, a^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) lratsubst (a^2 = b, a^3);
(%o1) a b
@@ -1582,7 +1582,7 @@ which is a list of equations.
@c ===beg===
@c lratsubst ([[a^2=b*a, b=c]], a^3);
@c ===end===
-@example
+@example maxima
@group
(%i1) lratsubst ([[a^2=b*a, b=c]], a^3);
2
@@ -1652,7 +1652,7 @@ Examples:
@c factor(poly);
@c polymod(%);
@c ===end===
-@example
+@example maxima
@group
(%i1) modulus:7;
(%o1) 7
@@ -1724,7 +1724,7 @@ See also @mref{denom}
@c g2:sin(x)/10*cos(x)/y;
@c num(g2);
@c ===end===
-@example
+@example maxima
@group
(%i1) g1:(x+2)*(x+1)/((x+3)^2);
(x + 1) (x + 2)
@@ -1779,7 +1779,7 @@ Examples:
@c p : expand (subst (x^3 - x - 1, x, x^2 - a));
@c polydecomp (p, x);
@c ===end===
-@example
+@example maxima
@group
(%i1) polydecomp (x^210, x);
7 5 3 2
@@ -1804,7 +1804,7 @@ The following function composes @code{L = [e_1, ..., e_n]} as functions in
@c compose (L, x) :=
@c block ([r : x], for e in L do r : subst (e, x, r), r) $
@c ===end===
-@example
+@example maxima
@group
(%i1) compose (L, x) :=
block ([r : x], for e in L do r : subst (e, x, r), r) $
@@ -1818,7 +1818,7 @@ Re-express above example using @code{compose}:
@c block ([r : x], for e in L do r : subst (e, x, r), r) $
@c polydecomp (compose ([x^2 - a, x^3 - x - 1], x), x);
@c ===end===
-@example
+@example maxima
@group
(%i1) compose (L, x) :=
block ([r : x], for e in L do r : subst (e, x, r), r) $
@@ -1841,7 +1841,7 @@ returns @var{p} (unexpanded), @code{polydecomp (compose ([@var{p_1}, ...,
@c polydecomp (compose ([x^2 + 2*x + 3, x^2], x), x);
@c polydecomp (compose ([x^2 + x + 1, x^2 + x + 1], x), x);
@c ===end===
-@example
+@example maxima
@group
(%i1) compose (L, x) :=
block ([r : x], for e in L do r : subst (e, x, r), r) $
@@ -1913,7 +1913,7 @@ The polynomial needn't be expanded:
@c polynomialp ((x + 1)*(x + 2), [x]);
@c polynomialp ((x + 1)*(x + 2)^a, [x]);
@c ===end===
-@example
+@example maxima
@group
(%i1) polynomialp ((x + 1)*(x + 2), [x]);
(%o1) true
@@ -1931,7 +1931,7 @@ An example using non-default values for coeffp and exponp:
@c polynomialp ((x^(1/2) + 1)*(x + 2)^(3/2), [x], numberp,
@c numberp);
@c ===end===
-@example
+@example maxima
@group
(%i1) polynomialp ((x + 1)*(x + 2)^(3/2), [x], numberp, numberp);
(%o1) true
@@ -1949,7 +1949,7 @@ Polynomials with two variables:
@c polynomialp (x^2 + 5*x*y + y^2, [x]);
@c polynomialp (x^2 + 5*x*y + y^2, [x, y]);
@c ===end===
-@example
+@example maxima
@group
(%i1) polynomialp (x^2 + 5*x*y + y^2, [x]);
(%o1) false
@@ -1966,7 +1966,7 @@ Polynomial in one variable and accepting any expression free of @code{x} as a co
@c polynomialp (a*x^2 + b*x + c, [x]);
@c polynomialp (a*x^2 + b*x + c, [x], lambda([ex], freeof(x, ex)));
@c ===end===
-@example
+@example maxima
@group
(%i1) polynomialp (a*x^2 + b*x + c, [x]);
(%o1) false
@@ -2052,7 +2052,7 @@ Examples:
@c (4*y^2 + x^2);
@c rat (%, y, a, x);
@c ===end===
-@example
+@example maxima
@group
(%i1) ((x - 2*y)^4/(x^2 - 4*y^2)^2 + 1)*(y + a)*(2*y + x) /
(4*y^2 + x^2);
@@ -2131,7 +2131,7 @@ Example:
@c s: a*x + b*x + 5$
@c ratcoef (s, a + b);
@c ===end===
-@example
+@example maxima
(%i1) s: a*x + b*x + 5$
@group
(%i2) ratcoef (s, a + b);
@@ -2193,7 +2193,7 @@ Examples:
@c expr2: a^2/(b^2 + 3) + b/(b^2 + 3);
@c ratexpand (expr2);
@c ===end===
-@example
+@example maxima
@group
(%i1) expr: (x^2 + x + 1)/(y^2 + 7);
2
@@ -2279,7 +2279,7 @@ Example:
@c expr: (a + b)^3 + (a + b)^2;
@c ratdiff (expr, a + b);
@c ===end===
-@example
+@example maxima
@group
(%i1) expr: (4*x^3 + 10*x - 11)/(x^5 + 5);
3
@@ -2383,7 +2383,7 @@ Examples:
@c expand (expr);
@c ratexpand (expr);
@c ===end===
-@example
+@example maxima
@group
(%i1) ratexpand ((2*x - 3*y)^3);
3 2 2 3
@@ -2538,7 +2538,7 @@ Examples:
@c ratsimp (%);
@c x^(a + 1/a), ratsimpexpons: true;
@c ===end===
-@example
+@example maxima
@group
(%i1) sin (x/(x^2 + x)) = exp ((log(x) + 1)^2 - log(x)^2);
2 2
@@ -2646,7 +2646,7 @@ Examples:
@c radsubstflag: true$
@c ratsubst (u, sqrt(x), x);
@c ===end===
-@example
+@example maxima
@group
(%i1) ratsubst (a, x*y^2, x^4*y^3 + x^4*y^8);
3 4
@@ -2739,7 +2739,7 @@ list @code{VARLIST}.
@c rat(2*a+b^2);
@c :lisp varlist
@c ===end===
-@example
+@example maxima
(%i1) ratvarswitch:true$
@group
(%i2) rat(2*x+y^2);
@@ -2771,7 +2771,7 @@ evaluation are still present.
@c rat(2*a+b^2);
@c :lisp varlist
@c ===end===
-@example
+@example maxima
(%i1) ratvarswitch:false$
@group
(%i2) rat(2*x+y^2);
@@ -2827,7 +2827,7 @@ Examples:
@c ratwtlvl: 1$
@c expr1^2;
@c ===end===
-@example
+@example maxima
@group
(%i1) ratweight (a, 1, b, 1);
(%o1) [a, 1, b, 1]
@@ -2928,7 +2928,7 @@ Examples:
@c bezout(a*x^2+b*x+1, c*x+2, x);
@c determinant(%);
@c ===end===
-@example
+@example maxima
@group
(%i1) resultant(2*x^2+3*x+1, 2*x^2+x+1, x);
(%o1) 8
@@ -3040,7 +3040,7 @@ Example:
@c ===beg===
@c sqfr (4*x^4 + 4*x^3 - 3*x^2 - 4*x - 1);
@c ===end===
-@example
+@example maxima
@group
(%i1) sqfr (4*x^4 + 4*x^3 - 3*x^2 - 4*x - 1);
2 2
@@ -3103,7 +3103,7 @@ Examples:
@c ev (ratdisrep (rat(%)), algebraic);
@c tellrat (y^2 = x^2);
@c ===end===
-@example
+@example maxima
@group
(%i1) 10*(%i + 1)/(%i + 3^(1/3));
10 (%i + 1)
-----------------------------------------------------------------------
Summary of changes:
doc/info/Polynomials.texi | 118 +++++++++++++++++++++++-----------------------
1 file changed, 59 insertions(+), 59 deletions(-)
hooks/post-receive
--
Maxima CAS
|