From: David B. <dbm...@gm...> - 2025-06-10 05:27:31
|
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> </head> <body> <p>On 10/06/2025 14:39, Aleksas Domarkas wrote:</p> <blockquote type="cite" cite="mid:CA+CNqF=1+J...@ma..."> <meta http-equiv="content-type" content="text/html; charset=UTF-8"> <div dir="ltr"> <div dir="ltr"> <div dir="ltr">In Maple <div> <div>T:=3*a^2*x^(2*b)+(3*a*b-a)*x^b-3*x^(2/3)=0:</div> <div>solve(identity(T,x,[a,b]);</div> <div>return</div> <div>[[a=-1,b=1/3],[a=1,b=1/3]]</div> <div><br> </div> <div>How to do it with Maxima ?</div> <div><br> </div> <div>I am looking solution y=a*x^b of Riccati eguation</div> <div>3*x*'diff(y,x)=3*x^(2/3)+(1-3*y)*y;</div> <div><br> </div> </div> </div> </div> </div> </blockquote> <p>You can solve it directly:</p> <p><font face="monospace">(%i1) eq:3*x*'diff(y,x)=3*x^(2/3)+(1-3*y)*y;<br> dy 2/3<br> (%o1) 3 x -- = (1 - 3 y) y + 3 x<br> dx<br> (%i2) load('contrib_ode);<br> (%o2) /usr/share/maxima/5.47.0/share/contrib/diffequations/contrib_ode.mac<br> (%i3) contrib_ode(eq,y,x);<br> 1/3 1/3<br> (%o3) [y = tanh(3 x + %c) x ]<br> (%i4) ode_check(eq,%[1]);<br> (%o4) 0<br> (%i5) method;<br> (%o5) riccati</font><br> </p> <p><span style="white-space: pre-wrap">You can print diagnostic messages and look at the source code and references for details</span></p> <p><span style="white-space: pre-wrap"><font face="monospace">(%i6) put('contrib_ode,true,'verbose); (%o6) true (%i7) contrib_ode(eq,y,x); -> ode_contrib First order equation -> ode2 in ode1_nonlinear -> ode1_factor in ode1_factor 2 2/3 cannot factor 3 y - y + 3 %p x - 3 x -> ode1_clairaut Expression not free of x and y: 2/3 2/3 2 3 (y + %r) + %p (- 3 y - 2 y - 3 %r) - ------------------------------------------- 2/3 %p -> ode1_lagrange In ode1_lagrange -> ode1_riccati is Ricatti equation 1 f0: ---- 1/3 x 1 f1: --- 3 x 1 f2: - - x equation is special Riccati equation -> In ode1_riccati_special 1 a: - 3 b: 1 c: 1 2 n: - 3 Case (a.i) -> In ode1_riccati_special_i 1 a: - 3 b: 1 c: 1 2 n: - 3 Case (a.i.1) b*c>0, b>0 and c>0 1/3 1/3 (%o7) [y = tanh(3 x + %c) x ] </font> </span></p> </body> </html> |