|
From: Stavros M. <mac...@gm...> - 2024-04-09 15:50:32
|
Maxima is not very smart about the *conjugate* function. If you want to
find a real expression for the absolute value of a complex expression, try
*cabs*:
depends([x,y],t) => [x(t), y(t)]
cabs(x+%i*y) =>
2 2
sqrt(y + x )
diff(%,t) =>
dy dx
2 y -- + 2 x --
dt dt
---------------
2 2
2 sqrt(y + x )
On Tue, Apr 9, 2024 at 11:39 AM <fi...@ig...> wrote:
> Dear Maxima Users,
>
> I am a little confused about Maxima's understanding of the abs() function.
>
> Consider a complex function f = x + i y where x and y depend on some
> real parameter t. What should the first derivative df/dt be? Shouldn't
> it be purely real?
>
> (%i1) depends([x, y], t);
> (%o1) [x(t), y(t)]
> (%i2) f : x + %i * y;
> (%o2) %i y + x
> (%i3) diff(abs(f), t);
> dy dx
> (%i y + x) (%i -- + --)
> dt dt
> (%o3) -----------------------
> abs(%i y + x)
> (%i4) expand(%);
> dy dy dx dx
> y -- %i x -- %i -- y x --
> dt dt dt dt
> (%o4) (- -------------) + ------------- + ------------- + -------------
> abs(%i y + x) abs(%i y + x) abs(%i y + x) abs(%i y + x)
>
>
> Oops! Maxima tells me, that the first derivative is not real but has
> an imaginary part!
>
> What would be my mistake? Did I miss something in the documentation
> about complex derivatives? I would like to apologize in advance.
>
> For my understanding the following equation for some complex number z
> holds:
>
> abs(z) = sqrt(z conj(z))
>
> right?
>
> So we try
>
> (%i5) diff(sqrt(f * conjugate(f)), t);
> dy dx dx dy
> (x - %i y) (%i -- + --) + (%i y + x) (-- - %i --)
> dt dt dt dt
> (%o5) -------------------------------------------------
> 2 sqrt((x - %i y) (%i y + x))
> (%i6) expand(%);
> dy dx
> y -- x --
> dt dt
> (%o6) ------------- + -------------
> 2 2 2 2
> sqrt(y + x ) sqrt(y + x )
>
>
> The expected result; and purely real.
>
> BTW.: For Maxima the following is not evaluated to zero:
>
> (%i7) abs(f) - sqrt(f * conjugate(f));
> (%o7) abs(%i y + x) - sqrt((x - %i y) (%i y + x))
>
> Why this?
>
>
> Any advice appretiated and best regards
>
>
> Torsten
>
>
>
>
> --
> ------------------------------------------------------------------------
> Torsten Finke
> fi...@ig...
> ------------------------------------------------------------------------
>
>
> _______________________________________________
> Maxima-discuss mailing list
> Max...@li...
> https://lists.sourceforge.net/lists/listinfo/maxima-discuss
>
|