|
From: Robert D. <rob...@gm...> - 2023-11-06 04:12:26
|
On Sun, Nov 5, 2023 at 6:38 PM Alexander P-sky <apo...@gm...> wrote:
> Sum[Binomial[n - 1, n - i] Sum[Binomial[k + i, i] Binomial[n - 1, n - k],
{k, 0, n}], {i, 0, n}]
Well, Maxima has a function called simplify_sum which can handle many
identities, but, for the record, it doesn't recognize this.
(%i2) sum (binomial (k + i, i)*binomial (n - 1, n - k), k, 0, n);
n
====
\
(%o2) > binomial(k + i, i) binomial(n - 1, n - k)
/
====
k = 0
(%i3) sum (binomial (n - 1, n - i) * %o2, i, 0, n);
n n
==== ====
\ \
(%o3) > ( > binomial(k + i, i) binomial(n - 1, n - k))
/ /
==== ====
i = 0 k = 0
binomial(n - 1, n - i)
(%i5) load (simplify_sum) $
(%i6) simplify_sum (%o3);
errexp1 non-rational term ratio to nusum
n n
==== ====
\ \
(%o6) > > binomial(k + i, i) binomial(n - 1, n - i)
/ /
==== ====
i = 0 k = 0
binomial(n - 1, n - k)
(%i7) simplify_sum (%o2);
Is i + 1 positive, negative or zero?
p;
n
====
\
(%o7) > binomial(k + i, i) binomial(n - 1, n - k)
/
====
k = 0
best,
Robert
|