From: Robert D. <rob...@gm...> - 2023-11-06 04:12:26
|
On Sun, Nov 5, 2023 at 6:38 PM Alexander P-sky <apo...@gm...> wrote: > Sum[Binomial[n - 1, n - i] Sum[Binomial[k + i, i] Binomial[n - 1, n - k], {k, 0, n}], {i, 0, n}] Well, Maxima has a function called simplify_sum which can handle many identities, but, for the record, it doesn't recognize this. (%i2) sum (binomial (k + i, i)*binomial (n - 1, n - k), k, 0, n); n ==== \ (%o2) > binomial(k + i, i) binomial(n - 1, n - k) / ==== k = 0 (%i3) sum (binomial (n - 1, n - i) * %o2, i, 0, n); n n ==== ==== \ \ (%o3) > ( > binomial(k + i, i) binomial(n - 1, n - k)) / / ==== ==== i = 0 k = 0 binomial(n - 1, n - i) (%i5) load (simplify_sum) $ (%i6) simplify_sum (%o3); errexp1 non-rational term ratio to nusum n n ==== ==== \ \ (%o6) > > binomial(k + i, i) binomial(n - 1, n - i) / / ==== ==== i = 0 k = 0 binomial(n - 1, n - k) (%i7) simplify_sum (%o2); Is i + 1 positive, negative or zero? p; n ==== \ (%o7) > binomial(k + i, i) binomial(n - 1, n - k) / ==== k = 0 best, Robert |