From: Eduardo O. <edu...@gm...> - 2023-07-16 04:08:02
|
On Sat, 15 Jul 2023 at 17:50, Richard Fateman <fa...@gm...> wrote: > > I'm not sure what you really want to do, but maybe > tex('integrate(f,x)= ratsimp(integrate(f,x))); > > will work? Hi Richard, Here is a _VERY_ bare prototype of what I really want(ed) to do. If I run this in Maxima, f : x^3 * sqrt(1 - 4*x^2); F1 : 'integrate(f, x); F2 : changevar(F1, u=2*x, u, x); F3 : rootscontract(F2); F4 : ev(F3, 'integrate); F5 : expand(F4); F6 : subst([u=2*x], F5); s : sqrt(1-4*x^2); F7 : expand(F6/s)*s; nl : " "$ tex0(ex) := block([s,len], s : tex(ex,false), len : slength(s), substring(s,3,len-2))$ sa2(name,ex) := sconcat(nl, "\\sa{", name, "}{", tex0(ex), "}")$ sa1(nameex) := apply('sa2, nameex)$ sas([nameexs]) := apply('sconcat, map('sa1, nameexs))$ sas(["F1", F1], ["F3", F3], ["F7", F7]); it produces the middle part of this LaTeX code: % Usage: % \sa{42}{foo bar} % \ga{42} % is roughly equivalent to this, % \def\myarg42{foo bar} % \myarg42 % but with the "4" and the "2" being treated as letters. \def\sa#1#2{\expandafter\def\csname myarg#1\endcsname{#2}} \def\ga#1{\csname myarg#1\endcsname} \sa{F1}{\int {x^3\,\sqrt{1-4\,x^2}}{\;dx}} \sa{F3}{{{\int {u^3\,\sqrt{1-u^2}}{\;du}}\over{16}}} \sa{F7}{\sqrt{1-4\,x^2}\,\left({{x^4}\over{5}}-{{x^2}\over{60}}-{{1}\over{ 120}}\right)} $$\begin{array}{l} \ga{F1} \\ = \ga{F3} \\ = \ga{F7} \\ \end{array} $$ I am just playing with ways to send Maxima expressions to LaTeX as definitions... Cheers =), Eduardo |