From: Stavros M. <mac...@gm...> - 2023-07-08 19:23:32
|
For the last question, try scanmap('factor,f2). On Sat, Jul 8, 2023, 15:06 Eduardo Ochs <edu...@gm...> wrote: > Hi all, > > I am trying to translate to Maxima some exercises that I gave to my > students. In this code > > edo : y_xx + 4*y_x + 29*y = 0; > edo2 : subst([y_xx='diff(y,x,2), y_x='diff(y,x) ], edo); > edo2(f) := subst([y_xx= diff(f,x,2), y_x= diff(f,x), y=f], edo); > sols : ode2(edo2,y,x); > sol0 : rhs(ode2(edo2,y,x)); > f3 : subst([%k1=0, %k2=1], sol0); > f4 : subst([%k1=1, %k2=0], sol0); > f1 : expand(exponentialize(f3 + %i*f4)); > f2 : expand(exponentialize(f3 - %i*f4)); > expand(edo2(f1)); > expand(edo2(f2)); > expand(edo2(f3)); > expand(edo2(f4)); > display2d:false$ > sol0; > f1; > f2; > f3; > f4; > > ode2 prefers to return the basic real solutions of the ODE "edo" - see > sol0, f3 and f4 here... > > (%i15) sol0; > (%o15) %e^-(2*x)*(%k1*sin(5*x)+%k2*cos(5*x)) > (%i16) f1; > (%o16) %e^(5*%i*x-2*x) > (%i17) f2; > (%o17) %e^((-5*%i*x)-2*x) > (%i18) f3; > (%o18) %e^-(2*x)*cos(5*x) > (%i19) f4; > (%o19) %e^-(2*x)*sin(5*x) > (%i20) > > ...and I had to do some (simple) juggling to obtain the basic complex > solutions, that are f1 and f2. > > Is there a flag that makes ode2 prefer the complex solutions instead > of the real ones? And, btw, how do I make Maxima move the x in > > %e^((-5*%i*x)-2*x) > > outside, and transform that expression into this? > > %e^((-2-5*%i)*x) > > Thanks in advance! =) > Eduardo Ochs > http://anggtwu.net/eev-maxima.html > > _______________________________________________ > Maxima-discuss mailing list > Max...@li... > https://lists.sourceforge.net/lists/listinfo/maxima-discuss > |