From: Robert D. <rob...@gm...> - 2022-11-15 16:51:37
|
Hello Patrick, Forgive me for not replying in French, I can read it but I can't write it. I am taking the liberty of forwarding your message to the primary Maxima mailing list, maxima-discuss. I think there are readers there who can reply in French. About the method for determining the root of the equation in Maxima, I believe that your method is valid, and I can't suggest a better approach. I'm glad to hear Maxima is getting a mention in the OEIS. It is a terrific resource which I have used many times. All the best, Robert Dodier On Sat, Nov 12, 2022 at 9:28 AM Patrick GUILLEMIN < pat...@ho...> wrote: > Bonjour, > > Je vais soumette l’exemple de code MAXIMA suivant à > https://oeis.org/A173272 ; Est-ce correct (*) pour vous? > > Le record donné par G. C. Greubel est de 10 000 digits. > > J’en donne 150 parce que MAPLE en donne 120 (comme Mathematica) > > > > /* OEIS A173272 Decimal expansion of the positive solution of > sqrt((2-x)(2+x)) + sqrt((3-x)(a+x)) = sqrt((2-x)(2+x))*sqrt((3-x)(3+x)). */ > > /* After MAPLE and MATHEMATICA examples, Patrick Guillemin is adding a > MAXIMA example with 150 Digits */ > > find_root_abs:1/10^150$ find_root_rel:1/10^150$ fpprec:150$ > fpprintprec:150$ > > x0:bf_find_root(x^8-22*x^6+163*x^4-454*x^2+385, x, 1.1b0, 1.3b0); > > /* end of code */ > > > > Afin de donner le change à MAPLE et MATHEMATICA > > > > EXAMPLE > > 1.231185723778668829962705... [R. J. Mathar, Feb 21 2010] > > > > MAPLE > > Digits := 120 ; fsolve(x^8-22*x^6+163*x^4-454*x^2+385, x, 1.1..1.3) ; # R. > J. Mathar, Feb 21 2010 > > MATHEMATICA > > Root[#^8 - 22#^6 + 163#^4 - 454#^2 + 385 &, 3] // RealDigits[#, 10, 105]& > // First (* Jean-François Alcover, Feb 22 2013 *) > > RealDigits[x/.FullSimplify[With[{a=Sqrt[(2-x)(2+x)], b=Sqrt[(3-x)(3+x)]}, > Solve[a*b==a+b, x]]][[2]], 10, 120][[1]] (* Essentially identical to Jean- > Francois Alcover's program above *) (* Harvey P. Dale, Dec 26 2014 *) > > Cordialement > > Patrick > > > > PS > > (*) J’ai vérifié les 150 digits, ils sont corrects mais je me demande si > j’ai utilisé la bonne façon de faire avec MAXIMA ? > > > > /* x0 result OK until a(150) comparing x first 150 digits with OEIS > A173272 / a(1) to a(157) of G. C. Greubel, Table of n, a(n) for n = > 1..10000 Reference */ > > /* > 1.23118572377866882996270583476978887456864902699763492434384690286327883546368258020702207613654231577873867592541119320307117751737256969245684339511b0 > x0 150 digits*/ > > /* > 1.231185723778668829962705834769788874568649026997634924343846902863278835463682580207022076136542315778738675925411193203071177517372569692456843395112022705 > OEIS reference 157 digits */ > > > _______________________________________________ > Maxima-lang-fr mailing list > Max...@li... > https://lists.sourceforge.net/lists/listinfo/maxima-lang-fr > |