## [Maxima-commits] CVS: maxima/doc/info/ru Help.texi,1.2,1.3

 [Maxima-commits] CVS: maxima/doc/info/ru Help.texi,1.2,1.3 From: Vadim V. Zhytnikov - 2007-06-24 15:11:21 Update of /cvsroot/maxima/maxima/doc/info/ru In directory sc8-pr-cvs16.sourceforge.net:/tmp/cvs-serv30989 Modified Files: Help.texi Log Message: Revision update 1.23 -> 1.24 Index: Help.texi =================================================================== RCS file: /cvsroot/maxima/maxima/doc/info/ru/Help.texi,v retrieving revision 1.2 retrieving revision 1.3 diff -u -d -r1.2 -r1.3 --- Help.texi 30 May 2007 14:46:56 -0000 1.2 +++ Help.texi 24 Jun 2007 15:11:02 -0000 1.3 @@ -1,7 +1,7 @@ @c Language=Russian @c Encoding=CP1251 @c File=Help.texi -@... OriginalRevision=1.23 +@c OriginalRevision=1.24 @menu * Lisp è Maxima:: @@ -323,8 +323,10 @@ 5: integerp (Functions and Variables for Miscellaneous Options) 6: integer_partitions (Functions and Variables for Sets) 7: integrate (Functions and Variables for Integration) - 8: integrate_use_rootsof (Functions and Variables for Integration) - 9: integration_constant_counter (Functions and Variables for Integration) + 8: integrate_use_rootsof (Functions and Variables for + Integration) + 9: integration_constant_counter (Functions and Variables for + Integration) 10: nonnegintegerp (Functions and Variables for linearalgebra) Enter space-separated numbers, `all' or `none': 7 8 @@ -332,16 +334,16 @@ -- Function: integrate (, , , ) Attempts to symbolically compute the integral of with respect to . `integrate (, )' is an indefinite - integral, while `integrate (, , , )' is a definite - integral, [...] + integral, while `integrate (, , , )' is a + definite integral, [...] -- Option variable: integrate_use_rootsof Default value: `false' - When `integrate_use_rootsof' is `true' and the denominator of a - rational function cannot be factored, `integrate' returns the - integral in a form which is a sum over the roots (not yet known) - of the denominator. + When `integrate_use_rootsof' is `true' and the denominator of + a rational function cannot be factored, `integrate' returns + the integral in a form which is a sum over the roots (not yet + known) of the denominator. [...] @end example