## maxima-discuss — Maxima discussion list

You can subscribe to this list here.

 2014 2015 2016 2017 Jan Feb (232) Mar (323) Apr (383) May (359) Jun (435) Jul (252) Aug (172) Sep (265) Oct (263) Nov (350) Dec (359) Jan (267) Feb (220) Mar (311) Apr (269) May (388) Jun (403) Jul (172) Aug (399) Sep (364) Oct (269) Nov (357) Dec (468) Jan (618) Feb (592) Mar (625) Apr (516) May (375) Jun (155) Jul (346) Aug (262) Sep (346) Oct (291) Nov (333) Dec (335) Jan (436) Feb (460) Mar (370) Apr (189) May (252) Jun (272) Jul (286) Aug (105) Sep Oct Nov Dec
S M T W T F S

1
(3)
2
(6)
3
(32)
4
(23)
5
(16)
6
(16)
7
(17)
8
(11)
9
(9)
10
(14)
11
(8)
12
(4)
13
(3)
14
(10)
15
(4)
16
(6)
17
(7)
18
(10)
19
(7)
20
(14)
21
(12)
22
(26)
23
(31)
24
(28)
25
(23)
26
(12)
27
(12)
28
(11)
29
(4)
30
(4)

Showing 4 results of 4

 Re: [Maxima-discuss] Kovacic Algorithm From: nijso beishuizen - 2014-04-12 21:56:36 ```I have updated kovacicODE.mac to fix the problem with abs(). It now runs the problem below without specifying anything for a,b,c you can get kovacicODE from here: https://github.com/bigfooted/maxima-odesolve (%i1) load(kovacicODE); (%o1) /usr/local/share/maxima/5.33.0/share/contrib/maxima-odesolve/kovacicODE.mac (%i2) ode:b*x+a*'diff(y,x)+'diff(y,x,2) = c; 2 d y dy (%o2) --- + a -- + b x = c 2 dx dx (%i3) kovacicODE(ode,y,x); 'diff(y,x,2) = -a*'diff(y,x,1)-b*x+c\$ -_w-abs(a)/2\$ [y = %k1*%e^-(a*x)-(a^2*(b*x^2-2*c*x)+a*(2*c-2*b*x)+2*b)/(2*a^3)+%k2]\$ 2 2 - a x a (b x - 2 c x) + a (2 c - 2 b x) + 2 b (%o3) [y = %k1 %e - ----------------------------------------- +%k2] 3 2 a This is the correct solution, but it could be further simplified by recognizing that if y(x) is a solution, then so is y(x)+C, so we could remove the constants a*2*c/(2*a^3) and 2*b/(2*a^3) from the nonhomogeneous part. Additionally kovacicODE tries to solve kamke problem 2.78 from the testsuite as well (it contains f(x) and f'(x)), but I still have to check the actual solution. ```
 [Maxima-discuss] lispdisp From: Leo Butler - 2014-04-12 19:38:53 ```The documentation for lispdisp makes no mention of it having no effect on 1d display. I would like to make lispdisp work the same for 1d display as 2d display. It currently does not. --- \$ ~/maxima/sandbox/maxima-current-release/maxima-local --init=/dev/null Maxima 5.33.0 http://maxima.sourceforge.net using Lisp SBCL 1.1.15.debian Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. By default, lispdisp=false and display2d=true: (%i1) ?foo; (%o1) foo (%i2) display2d:false\$ (%i3) ?foo; (%o3) ?foo -- Leo Butler SDF Public Access UNIX System - http://sdf.lonestar.org ```
 Re: [Maxima-discuss] inverse logarc From: Evgeniy Maevskiy - 2014-04-12 16:16:35 ```Maybe this? ---------------- sin(log(sqrt(x^2+1)+x)); subst(x=sinh(t),%); exponentialize(%); radcan(%); subst(t=asinh(x),%); expand(%); demoivre(%); ratsimp(%); ---------------- Evgeniy 12.04.2014 12:47, nijso beishuizen пишет: > I have an expression like this: > A:sin(log(sqrt(x*x+1)+x)); > > Is there a way to rewrite/simplify this to sin(arcsinh(x))? > I guess it's like asking for the inverse of logarc...? > > Best, > Nijso > > > ------------------------------------------------------------------------------ > Put Bad Developers to Shame > Dominate Development with Jenkins Continuous Integration > Continuously Automate Build, Test & Deployment > Start a new project now. Try Jenkins in the cloud. > http://p.sf.net/sfu/13600_Cloudbees > _______________________________________________ > Maxima-discuss mailing list > Maxima-discuss@... > https://lists.sourceforge.net/lists/listinfo/maxima-discuss > ```
 [Maxima-discuss] inverse logarc From: nijso beishuizen - 2014-04-12 09:50:55 ```I have an expression like this: A:sin(log(sqrt(x*x+1)+x)); Is there a way to rewrite/simplify this to sin(arcsinh(x))? I guess it's like asking for the inverse of logarc...? Best, Nijso ```

Showing 4 results of 4