You can subscribe to this list here.
2001 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}
(20) 
_{Dec}
(17) 

2002 
_{Jan}
(39) 
_{Feb}
(21) 
_{Mar}
(33) 
_{Apr}
(135) 
_{May}
(53) 
_{Jun}
(88) 
_{Jul}
(47) 
_{Aug}
(59) 
_{Sep}
(207) 
_{Oct}
(40) 
_{Nov}
(7) 
_{Dec}
(26) 
2003 
_{Jan}
(49) 
_{Feb}
(39) 
_{Mar}
(117) 
_{Apr}
(50) 
_{May}
(62) 
_{Jun}
(6) 
_{Jul}
(19) 
_{Aug}
(24) 
_{Sep}
(11) 
_{Oct}
(11) 
_{Nov}
(49) 
_{Dec}
(9) 
2004 
_{Jan}
(29) 
_{Feb}
(123) 
_{Mar}
(32) 
_{Apr}
(53) 
_{May}
(52) 
_{Jun}
(19) 
_{Jul}
(33) 
_{Aug}
(10) 
_{Sep}
(76) 
_{Oct}
(86) 
_{Nov}
(171) 
_{Dec}
(163) 
2005 
_{Jan}
(147) 
_{Feb}
(121) 
_{Mar}
(120) 
_{Apr}
(126) 
_{May}
(120) 
_{Jun}
(213) 
_{Jul}
(76) 
_{Aug}
(79) 
_{Sep}
(140) 
_{Oct}
(83) 
_{Nov}
(156) 
_{Dec}
(202) 
2006 
_{Jan}
(181) 
_{Feb}
(171) 
_{Mar}
(157) 
_{Apr}
(98) 
_{May}
(96) 
_{Jun}
(97) 
_{Jul}
(193) 
_{Aug}
(76) 
_{Sep}
(130) 
_{Oct}
(63) 
_{Nov}
(196) 
_{Dec}
(253) 
2007 
_{Jan}
(256) 
_{Feb}
(293) 
_{Mar}
(276) 
_{Apr}
(258) 
_{May}
(181) 
_{Jun}
(91) 
_{Jul}
(108) 
_{Aug}
(69) 
_{Sep}
(107) 
_{Oct}
(179) 
_{Nov}
(137) 
_{Dec}
(121) 
2008 
_{Jan}
(124) 
_{Feb}
(129) 
_{Mar}
(192) 
_{Apr}
(201) 
_{May}
(90) 
_{Jun}
(86) 
_{Jul}
(115) 
_{Aug}
(142) 
_{Sep}
(49) 
_{Oct}
(91) 
_{Nov}
(95) 
_{Dec}
(218) 
2009 
_{Jan}
(230) 
_{Feb}
(149) 
_{Mar}
(118) 
_{Apr}
(72) 
_{May}
(77) 
_{Jun}
(68) 
_{Jul}
(102) 
_{Aug}
(72) 
_{Sep}
(89) 
_{Oct}
(76) 
_{Nov}
(125) 
_{Dec}
(86) 
2010 
_{Jan}
(75) 
_{Feb}
(90) 
_{Mar}
(89) 
_{Apr}
(121) 
_{May}
(111) 
_{Jun}
(66) 
_{Jul}
(75) 
_{Aug}
(66) 
_{Sep}
(66) 
_{Oct}
(166) 
_{Nov}
(121) 
_{Dec}
(73) 
2011 
_{Jan}
(74) 
_{Feb}

_{Mar}

_{Apr}
(14) 
_{May}
(22) 
_{Jun}
(31) 
_{Jul}
(53) 
_{Aug}
(37) 
_{Sep}
(23) 
_{Oct}
(25) 
_{Nov}
(31) 
_{Dec}
(28) 
2012 
_{Jan}
(18) 
_{Feb}
(11) 
_{Mar}
(32) 
_{Apr}
(17) 
_{May}
(48) 
_{Jun}
(37) 
_{Jul}
(23) 
_{Aug}
(54) 
_{Sep}
(15) 
_{Oct}
(11) 
_{Nov}
(19) 
_{Dec}
(22) 
2013 
_{Jan}
(11) 
_{Feb}
(32) 
_{Mar}
(24) 
_{Apr}
(37) 
_{May}
(31) 
_{Jun}
(14) 
_{Jul}
(26) 
_{Aug}
(33) 
_{Sep}
(40) 
_{Oct}
(21) 
_{Nov}
(36) 
_{Dec}
(84) 
2014 
_{Jan}
(23) 
_{Feb}
(20) 
_{Mar}
(27) 
_{Apr}
(24) 
_{May}
(31) 
_{Jun}
(27) 
_{Jul}
(34) 
_{Aug}
(26) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(23) 
_{Dec}
(73) 
2015 
_{Jan}
(33) 
_{Feb}
(8) 
_{Mar}
(24) 
_{Apr}
(45) 
_{May}
(27) 
_{Jun}
(19) 
_{Jul}
(21) 
_{Aug}
(51) 
_{Sep}
(43) 
_{Oct}
(29) 
_{Nov}
(61) 
_{Dec}
(86) 
2016 
_{Jan}
(99) 
_{Feb}
(52) 
_{Mar}
(80) 
_{Apr}
(61) 
_{May}
(24) 
_{Jun}
(23) 
_{Jul}
(36) 
_{Aug}
(30) 
_{Sep}
(41) 
_{Oct}
(43) 
_{Nov}
(27) 
_{Dec}
(46) 
2017 
_{Jan}
(57) 
_{Feb}
(34) 
_{Mar}
(40) 
_{Apr}
(31) 
_{May}
(78) 
_{Jun}
(49) 
_{Jul}
(72) 
_{Aug}
(33) 
_{Sep}
(15) 
_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1
(5) 
2
(2) 
3
(1) 
4
(4) 
5
(3) 
6
(1) 
7
(2) 
8
(6) 
9
(1) 
10
(4) 
11
(1) 
12
(5) 
13
(3) 
14
(6) 
15
(8) 
16
(5) 
17
(6) 
18
(4) 
19
(2) 
20
(2) 
21

22

23
(3) 
24
(1) 
25
(3) 
26
(2) 
27
(1) 
28
(2) 
29
(1) 
30

31





From: Volker van Nek <van_nek@us...>  20131209 21:31:57

This is an automated email from the git hooks/postreceive script. It was generated because a ref change was pushed to the repository containing the project "Maxima CAS". The branch, master has been updated via aff10c4aaeae298b3c246523183175633e46e628 (commit) from 470a43bba41d5c0b324194bd009dab1028122a23 (commit) Those revisions listed above that are new to this repository have not appeared on any other notification email; so we list those revisions in full, below.  Log  commit aff10c4aaeae298b3c246523183175633e46e628 Author: Volker van Nek <volkervannek@...> Date: Mon Dec 9 22:31:05 2013 +0100 fix: gfcminusb, gfprimp. Last commit was also: revise: zndlog, gfprimpoly, gfprimpolyp, gfminpoly. introduce: lookupaddition via Zech logs, generalized Jacobisymbol. diff git a/src/numth.lisp b/src/numth.lisp index 9aa6967..6917bda 100644  a/src/numth.lisp +++ b/src/numth.lisp @@ 816,6 +816,7 @@ (defun gfcminusb (c) ;; assumes that 0 <= c < *gfchar* (cond + ((= 0 c) 0) ((= 2 *gfchar*) c) (*efarith?* (efcminusb c)) (t (maybecharisfixnumlet ((c c)) @@ 868,6 +869,7 @@ (defun efcminusb (a) (cond + ((= 0 a) 0) ((= 2 *gfchar*) a) ($ef_coeff_mult (mfuncall '$ef_coeff_mult (1 *gfchar*) a)) (*gflogs?* (efcminusbytable a)) @@ 965,6 +967,7 @@ (definecompilermacro gfcminusb (a) ;; assumes that 0 <= a < *gfchar* `(cond + ((= 0 ,a) 0) (*efarith?* (efcminusb ,a) ) ((typep *gfchar* 'fixnum) @@ 1029,6 +1032,7 @@ (si::definecompilermacro gfcminusb (a) ;; assume that 0 <= a < *gfchar* : `(cond + ((= 0 ,a) 0) (*efarith?* (efcminusb ,a) ) ((typep *gfchar* 'fixnum) @@ 1088,16 +1092,15 @@ (fs (getfactorlist *gford*)) ) (setq *gffsord* (sort fs #'(lambda (a b) (< (car a) (car b))))) ) ;; .. [pi, ei] .. + (when *gfirred?* (gfprecomp)) + (setq *gfprim* ;; primitive element (cond ((= 1 *gfexp*) (if (= 2 *gfchar*) (list 0 1) (list 0 (znprimroot p *gford* (mapcar #'car *gffsord*))) )) ;; .. pi .. (factors_only:true) (t  (gfprecomp)  (if *gfirred?*  (gfprim)  '$unknown )))) + (if *gfirred?* (gfprim) '$unknown) ))) (setq *gfchar?* t *gfred?* t *gfdata?* t) ;; global flags ($gf_get_data) )) ;; data structure @@ 1135,7 +1138,7 @@ (let* (($intfaclim) (fs (getfactorlist *eford*)) ) (setq *effsord* (sort fs #'(lambda (a b) (< (car a) (car b))))) )  (efprecomp) + (when *efirred?* (efprecomp)) (setq *efdata?* t *efred?* t *efprim* (if (= 1 *efexp*) @@ 1694,7 +1697,7 @@ (when a ($gf_exp (gfx2p a) (neg n))) ) ;; a is nil in case the inverse does not exist (*gflogs?* (gfx2p (gfpowbytable (gfp2x a) n)) )  (*gfx^ppowers* + ((and *gfirred?* *gfx^ppowers*) (gfx2p (gfpow$ (gfp2x a) n *gfred*)) ) (t (setq a (gfp2x a)) @@ 1768,7 +1771,7 @@ (gfmerror (intl:gettext "`ef_exp': Unknown reduction polynomial.")) ) (setq a (gfinv (gfp2x a) *efred*)) (when a ($ef_exp (gfx2p a) (neg n))) )  (*efx^qpowers* + ((and *efirred?* *efx^qpowers*) (gfx2p (gfpow$ (gfp2x a) n *efred*)) ) (t (setq a (gfp2x a)) @@ 2088,12 +2091,16 @@ (setq n (ash n 1) x (gfsq x red)) )))) ;; use precomputed *gfx^ppowers* resp. *efx^qpowers* +;; in a field use precomputed *gfx^ppowers* resp. *efx^qpowers* (defun gfpow$ (x n red) (if *efarith?*  (*fpow$ x n red *gfcard* *efcard* *efx^qpowers*)  (*fpow$ x n red *gfchar* *gfcard* *gfx^ppowers*) )) + (if *efirred?* + (*fpow$ x n red *gfcard* *efcard* *efx^qpowers*) + (gfpow x n red) ) + (if *gfirred?* + (*fpow$ x n red *gfchar* *gfcard* *gfx^ppowers*) + (gfpow x n red) ))) (defun *fpow$ (x n red p card x^ppowers) #+ (or ccl ecl gcl) (declare (optimize (speed 3) (safety 0))) @@ 2564,19 +2571,33 @@ ;; (defun gfprimp (x)  (*fprimp x *gfirred?* *gfchar* *gfred* *gffsx* *gffsxbasep* *gfx^ppowers*) ) + (cond + (*gfirred?* + (*fprimp2 x *gfchar* *gfred* *gffsx* *gffsxbasep* *gfx^ppowers*) ) + ((gfunitp x *gfred*) + (*fprimp1 x *gfred* *gford* *gffsord*) ) + (t nil) )) (defun efprimp (x)  (*fprimp x *efirred?* *gfcard* *efred* *effsx* *effsxbaseq* *efx^qpowers*) ) + (cond + (*efirred?* + (*fprimp2 x *gfcard* *efred* *effsx* *effsxbaseq* *efx^qpowers*) ) + ((gfunitp x *efred*) + (*fprimp1 x *efred* *eford* *effsord*) ) + (t nil) )) +;; +;; *fprimp1 +;; +(defun *fprimp1 (x red ord fsord) + (dolist (pe fsord t) + (when (equal '(0 1) (gfpow x (truncate ord (car pe)) red)) (return)) )) ;; ;; *fprimp uses precomputations +;; *fprimp2 uses precomputations and exponentiation by composition ;; (defun *fprimp (x irr? q red fs fsbaseq x^qpowers) +(defun *fprimp2 (x q red fs fsbaseq x^qpowers) #+ (or ccl ecl gcl) (declare (optimize (speed 3) (safety 0)))  (unless (or irr? (gfunitp x red))  (returnfrom *fprimp) ) (unless (or (= 2 *gfchar*) (= 1 (gfjacobi x red q)))  (returnfrom *fprimp) ) + (returnfrom *fprimp2) ) (let ((exponent (car red)) (x+c? (and (= (car x) 1) (= (cadr x) 1))) y prod c z ) @@ 2584,7 +2605,7 @@ ((= i lf) t) (declare (fixnum i j lf)) (cond  ((and irr? x+c? (cadr (svref fs i))) ;; linear and piord and pip1 + ((and x+c? (cadr (svref fs i))) ;; linear and piord and pip1 (setq c (if (= 2 (length x)) 0 (gfcminusb (car (last x)))) z (list 0 (gfat red c)) ) (when (oddp exponent) (setq z (gfminus z))) ;; (1)^n * red(c) @@ 2599,7 +2620,7 @@ prod (gftimes prod y red) j (1+ j) )) (when (or (null prod) (equal prod '(0 1))) ;; prod(f(x^q^j)^aij, j,0,m)  (return nil) )) )))) + (return nil) )) )))) ;; generalized Jacobisymbol (BachShallit, Theorem 6.7.1)  Summary of changes: src/numth.lisp  59 +++++++++++++++++++++++++++++++++++++ 1 files changed, 40 insertions(+), 19 deletions() hooks/postreceive  Maxima CAS 