Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Right-click on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
You can subscribe to this list here.
2001 |
Jan
|
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
(20) |
Dec
(17) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2002 |
Jan
(39) |
Feb
(21) |
Mar
(33) |
Apr
(135) |
May
(53) |
Jun
(88) |
Jul
(47) |
Aug
(59) |
Sep
(207) |
Oct
(40) |
Nov
(7) |
Dec
(26) |
2003 |
Jan
(49) |
Feb
(39) |
Mar
(117) |
Apr
(50) |
May
(62) |
Jun
(6) |
Jul
(19) |
Aug
(24) |
Sep
(11) |
Oct
(11) |
Nov
(49) |
Dec
(9) |
2004 |
Jan
(29) |
Feb
(123) |
Mar
(32) |
Apr
(53) |
May
(52) |
Jun
(19) |
Jul
(33) |
Aug
(10) |
Sep
(76) |
Oct
(86) |
Nov
(171) |
Dec
(163) |
2005 |
Jan
(147) |
Feb
(121) |
Mar
(120) |
Apr
(126) |
May
(120) |
Jun
(213) |
Jul
(76) |
Aug
(79) |
Sep
(140) |
Oct
(83) |
Nov
(156) |
Dec
(202) |
2006 |
Jan
(181) |
Feb
(171) |
Mar
(157) |
Apr
(98) |
May
(96) |
Jun
(97) |
Jul
(193) |
Aug
(76) |
Sep
(130) |
Oct
(63) |
Nov
(196) |
Dec
(253) |
2007 |
Jan
(256) |
Feb
(293) |
Mar
(276) |
Apr
(258) |
May
(181) |
Jun
(91) |
Jul
(108) |
Aug
(69) |
Sep
(107) |
Oct
(179) |
Nov
(137) |
Dec
(121) |
2008 |
Jan
(124) |
Feb
(129) |
Mar
(192) |
Apr
(201) |
May
(90) |
Jun
(86) |
Jul
(115) |
Aug
(142) |
Sep
(49) |
Oct
(91) |
Nov
(95) |
Dec
(218) |
2009 |
Jan
(230) |
Feb
(149) |
Mar
(118) |
Apr
(72) |
May
(77) |
Jun
(68) |
Jul
(102) |
Aug
(72) |
Sep
(89) |
Oct
(76) |
Nov
(125) |
Dec
(86) |
2010 |
Jan
(75) |
Feb
(90) |
Mar
(89) |
Apr
(121) |
May
(111) |
Jun
(66) |
Jul
(75) |
Aug
(66) |
Sep
(66) |
Oct
(166) |
Nov
(121) |
Dec
(73) |
2011 |
Jan
(74) |
Feb
|
Mar
|
Apr
(14) |
May
(22) |
Jun
(31) |
Jul
(53) |
Aug
(37) |
Sep
(23) |
Oct
(25) |
Nov
(31) |
Dec
(28) |
2012 |
Jan
(18) |
Feb
(11) |
Mar
(32) |
Apr
(17) |
May
(48) |
Jun
(37) |
Jul
(23) |
Aug
(54) |
Sep
(15) |
Oct
(11) |
Nov
(19) |
Dec
(22) |
2013 |
Jan
(11) |
Feb
(32) |
Mar
(24) |
Apr
(37) |
May
(31) |
Jun
(14) |
Jul
(26) |
Aug
(33) |
Sep
(40) |
Oct
(21) |
Nov
(36) |
Dec
(84) |
2014 |
Jan
(23) |
Feb
(20) |
Mar
(27) |
Apr
(24) |
May
(31) |
Jun
(27) |
Jul
(34) |
Aug
(26) |
Sep
(21) |
Oct
(45) |
Nov
(23) |
Dec
(73) |
2015 |
Jan
(33) |
Feb
(8) |
Mar
(24) |
Apr
(45) |
May
(27) |
Jun
(19) |
Jul
(21) |
Aug
(51) |
Sep
(43) |
Oct
(29) |
Nov
(61) |
Dec
(86) |
2016 |
Jan
(99) |
Feb
(52) |
Mar
(80) |
Apr
(61) |
May
(24) |
Jun
(23) |
Jul
(36) |
Aug
(30) |
Sep
(41) |
Oct
(43) |
Nov
(27) |
Dec
(46) |
2017 |
Jan
(57) |
Feb
(34) |
Mar
(40) |
Apr
(31) |
May
(78) |
Jun
(49) |
Jul
(72) |
Aug
(33) |
Sep
(26) |
Oct
(82) |
Nov
(69) |
Dec
(29) |
2018 |
Jan
(43) |
Feb
(9) |
Mar
|
Apr
(36) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
|
|
|
|
|
1
(5) |
2
(3) |
3
|
4
(22) |
5
(12) |
6
(7) |
7
|
8
|
9
(3) |
10
(10) |
11
(2) |
12
|
13
(8) |
14
(2) |
15
|
16
|
17
(5) |
18
(6) |
19
(8) |
20
|
21
(2) |
22
|
23
(4) |
24
(3) |
25
(8) |
26
(8) |
27
(1) |
28
(11) |
29
|
30
|
From: Raymond Toy <rtoy@us...> - 2006-09-01 20:48:20
|
Update of /cvsroot/maxima/maxima/src In directory sc8-pr-cvs7.sourceforge.net:/tmp/cvs-serv940 Modified Files: defint.lisp Log Message: Add a few comments about what intsc1, intsc, intsc0, and scprod are trying to do. Index: defint.lisp =================================================================== RCS file: /cvsroot/maxima/maxima/src/defint.lisp,v retrieving revision 1.27 retrieving revision 1.28 diff -u -d -r1.27 -r1.28 --- defint.lisp 1 Sep 2006 18:16:10 -0000 1.27 +++ defint.lisp 1 Sep 2006 20:48:17 -0000 1.28 @@ -1726,10 +1726,13 @@ (not (period %pi2 e var))) (return nil)) ((not (equal a 0.)) + ;; Apply the substitution to make the lower limit 0. (setq e (maxima-substitute (m+ a var) var e)) (setq a 0.) (setq b limit-diff))) -;;;Multiples of 2*%pi in limits. + ;; At this point, we have an integral with limits 0 and b. + + ;; Multiples of 2*%pi in limits. (cond ((eq (ask-integer (setq d (let (($float nil)) (m// limit-diff %pi2))) '$integer) '$yes) @@ -1742,10 +1745,16 @@ (cond ((setq ans (intsc e %pi2 var)) (return (m* d ans))) (t (return nil))))) + ;; The integral is not over a full period (2*%pi) or multiple + ;; of a full period. Need to do something special. (cond ((ratgreaterp %pi2 b) + ;; Less than 1 full period, so intsc can integrate it. (return (intsc e b var))) - (t (setq l a) - (setq a 0.))) + (t + (setq l a) + ;; Why do we need this? I think if we get here, a is + ;; already 0. + (setq a 0.))) (setq b (infr b)) (cond ((null l) (setq nzp2 (car b)) @@ -1768,6 +1777,8 @@ limit-diff)) (return ans)))) +;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)). I (rtoy) +;; think this expects b to be less than 2*%pi. (defun intsc (sc b var) (cond ((eq ($sign b) '$neg) (setq b (m*t -1. b)) @@ -1776,42 +1787,61 @@ (cond ((setq b (intsc0 (cdr sc) b var)) (m* (resimplify (car sc)) b)))) +;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)). (defun intsc0 (sc b var) + ;; Determine if sc is a product of sin's and cos's. (let ((nn* (scprod sc)) (dn* ())) - (cond (nn* (cond ((alike1 b half%pi) - (bygamma (car nn*) (cadr nn*))) - ((eq b '$%pi) - (cond ((eq (real-branch (cadr nn*) -1.) '$yes) - (m* (m+ 1. (m^ -1 (cadr nn*))) - (bygamma (car nn*) (cadr nn*)))))) - ((alike1 b %pi2) - (cond ((or (and (eq (ask-integer (car nn*) '$even) - '$yes) - (eq (ask-integer (cadr nn*) '$even) - '$yes)) - (and (ratnump (car nn*)) - (eq (real-branch (car nn*) -1.) - '$yes) - (ratnump (cadr nn*)) - (eq (real-branch (cadr nn*) -1.) - '$yes))) - (m* 4. (bygamma (car nn*) (cadr nn*)))) - ((or (eq (ask-integer (car nn*) '$odd) '$yes) - (eq (ask-integer (cadr nn*) '$odd) '$yes)) - 0.) - (t nil))) - ((alike1 b half%pi3) - (m* (m+ 1. (m^ -1 (cadr nn*)) (m^ -1 (m+l nn*))) - (bygamma (car nn*) (cadr nn*)))))) - (t (cond ((and (or (eq b '$%pi) - (alike1 b %pi2) - (alike1 b half%pi)) - (setq dn* (scrat sc b))) - dn*) - ((setq nn* (antideriv sc)) - (sin-cos-intsubs nn* var 0. b)) - (t ())))))) + (cond (nn* + ;; We have a product of sin's and cos's. We handle some + ;; special cases here. + (cond ((alike1 b half%pi) + ;; Wang p. 110, formula (1): + ;; integrate(sin(x)^m*cos(x)^n, x, 0, %pi/2) = + ;; gamma((m+1)/2)*gamma((n+1)/2)/2/gamma((n+m+2)/2) + (bygamma (car nn*) (cadr nn*))) + ((eq b '$%pi) + ;; Wang p. 110, near the bottom, says + ;; + ;; int(f(sin(x),cos(x)), x, 0, %pi) = + ;; int(f(sin(x),cos(x)) + f(sin(x),-cos(x)),x,0,%pi/2) + (cond ((eq (real-branch (cadr nn*) -1.) '$yes) + (m* (m+ 1. (m^ -1 (cadr nn*))) + (bygamma (car nn*) (cadr nn*)))))) + ((alike1 b %pi2) + (cond ((or (and (eq (ask-integer (car nn*) '$even) + '$yes) + (eq (ask-integer (cadr nn*) '$even) + '$yes)) + (and (ratnump (car nn*)) + (eq (real-branch (car nn*) -1.) + '$yes) + (ratnump (cadr nn*)) + (eq (real-branch (cadr nn*) -1.) + '$yes))) + (m* 4. (bygamma (car nn*) (cadr nn*)))) + ((or (eq (ask-integer (car nn*) '$odd) '$yes) + (eq (ask-integer (cadr nn*) '$odd) '$yes)) + 0.) + (t nil))) + ((alike1 b half%pi3) + ;; Wang, p. 111 says + ;; + ;; int(f(sin(x),cos(x)),x,0,3*%pi/2) = + ;; int(f(sin(x),cos(x)),x,0,%pi) + ;; + int(f(-sin(x),-cos(x)),x,0,%pi/2) + (m* (m+ 1. (m^ -1 (cadr nn*)) (m^ -1 (m+l nn*))) + (bygamma (car nn*) (cadr nn*)))))) + (t + ;; We don't have a product of sin's and cos's. + (cond ((and (or (eq b '$%pi) + (alike1 b %pi2) + (alike1 b half%pi)) + (setq dn* (scrat sc b))) + dn*) + ((setq nn* (antideriv sc)) + (sin-cos-intsubs nn* var 0. b)) + (t ())))))) ;;;Is careful about substitution of limits where the denominator may be zero ;;;because of various assumptions made. @@ -1840,6 +1870,8 @@ (t (let (($%piargs ())) (intsubs exp ll ul)))))) +;; Determine whether E is of the form sin(x)^m*cos(x)^n and return the +;; list (m n). (defun scprod (e) (let ((great-minus-1 #'(lambda (temp) (ratgreaterp temp -1))) |
From: Raymond Toy <rtoy@us...> - 2006-09-01 18:21:11
|
Update of /cvsroot/maxima/maxima/tests In directory sc8-pr-cvs7.sourceforge.net:/tmp/cvs-serv5643 Modified Files: rtest15.mac Log Message: Add test from Bug 1547769: integrate(sqrt(x^3/(2*a-x)),x,0,2*a) Index: rtest15.mac =================================================================== RCS file: /cvsroot/maxima/maxima/tests/rtest15.mac,v retrieving revision 1.42 retrieving revision 1.43 diff -u -d -r1.42 -r1.43 --- rtest15.mac 1 Sep 2006 17:27:49 -0000 1.42 +++ rtest15.mac 1 Sep 2006 18:21:04 -0000 1.43 @@ -513,3 +513,15 @@ integrate(1/(sin(x)^2+1),x,0,20*%pi); 10*sqrt(2)*%pi; + +/* + * Bug 1547769: integrate(sqrt(x^3/(2*a-x)),x,0,2*a); + * + * We don't get an internal error, and we should be able to evaluate + * this. defint.lisp, rev 1.27 + */ +(assume(a > 0), 0); +0; + +integrate(sqrt(x^3/(2*a-x)),x,0,2*a); +3*%pi*a^2/2; |
From: Raymond Toy <rtoy@us...> - 2006-09-01 18:16:14
|
Update of /cvsroot/maxima/maxima/src In directory sc8-pr-cvs7.sourceforge.net:/tmp/cvs-serv3479 Modified Files: defint.lisp Log Message: Modify BATA0 to recognize f(x)^y, where f(x) has the desired form: x^kk*(b*x^n+a)^l. This allows maxima to evaluate the integral in Bug [ 1547769 ] integrate(sqrt(x^3/(2*a-x)),x,0,2*a). Index: defint.lisp =================================================================== RCS file: /cvsroot/maxima/maxima/src/defint.lisp,v retrieving revision 1.26 retrieving revision 1.27 diff -u -d -r1.26 -r1.27 --- defint.lisp 1 Sep 2006 17:21:01 -0000 1.26 +++ defint.lisp 1 Sep 2006 18:16:10 -0000 1.27 @@ -1920,6 +1920,25 @@ (defun bata0 (e) (let (k c) (cond ((atom e) nil) + ((mexptp e) + ;; We have f(x)^y. Look to see if f(x) has the desired + ;; form. Then f(x)^y has the desired form too, with + ;; suitably modified values. + ;; + ;; XXX: Should we ask for the sign of f(x) if y is not an + ;; integer? This transformation we're going to do requires + ;; that f(x)^y be real. + (destructuring-bind (mexp base power) + e + (declare (ignore mexp)) + (multiple-value-bind (kk cc) + (bata0 base) + (when kk + ;; Got a match. Adjust kk and cc appropriately. + (destructuring-bind (l a n b) + cc + (values (mul kk power) + (list (mul l power) a n b))))))) ((and (mtimesp e) (null (cdddr e)) (or (and (setq k (findp (cadr e))) |
From: Raymond Toy <rtoy@us...> - 2006-09-01 17:27:52
|
Update of /cvsroot/maxima/maxima/tests In directory sc8-pr-cvs7.sourceforge.net:/tmp/cvs-serv15409 Modified Files: rtest15.mac Log Message: Add a few tests to verify that INTSC1 handles multiple periods correctly. Index: rtest15.mac =================================================================== RCS file: /cvsroot/maxima/maxima/tests/rtest15.mac,v retrieving revision 1.41 retrieving revision 1.42 diff -u -d -r1.41 -r1.42 --- rtest15.mac 8 Jul 2006 18:01:40 -0000 1.41 +++ rtest15.mac 1 Sep 2006 17:27:49 -0000 1.42 @@ -498,3 +498,18 @@ limit (abs(x), x, 0); 0; + +/* Related to Bug [1044318] defint(1/(sin(x)^2+1),x,0,3*%pi) + * + * integrate(1/(sin(x)^2+1),x,0,n*2*%pi) should be + * n*integrate(1/(sin(x)^2+1),x,0,2*%pi), for positive integer n. We + * were just returning the same value. + */ +integrate(1/(sin(x)^2+1),x,0,2*%pi); +sqrt(2)*%pi; + +integrate(1/(sin(x)^2+1),x,0,4*%pi); +2*sqrt(2)*%pi; + +integrate(1/(sin(x)^2+1),x,0,20*%pi); +10*sqrt(2)*%pi; |
From: Raymond Toy <rtoy@us...> - 2006-09-01 17:21:08
|
Update of /cvsroot/maxima/maxima/src In directory sc8-pr-cvs7.sourceforge.net:/tmp/cvs-serv12542/src Modified Files: defint.lisp Log Message: o Change CV so that we call $SUBSTITUTE instead of SUBST if the integration limit is a number. This causes some simplification to be done, which works around a bug in Bug 1504505 that shows up in cmucl. I think it happens because the expression isn't simplified but has lots of terms like x^n*0. This needs some more work/thought. Doesn't fix Bug 1504505 o Add a comment for what PQR does. o In INTSC1, fix a bug where we didn't multiply the answer by the number of periods in the integrand. Before integrate(1/(sin(x)^2+1),x,0,n*2*%pi) returned the same as integrate(1/(sin(x)^2+1),x,0,2*%pi), instead of n times that. Index: defint.lisp =================================================================== RCS file: /cvsroot/maxima/maxima/src/defint.lisp,v retrieving revision 1.25 retrieving revision 1.26 diff -u -d -r1.25 -r1.26 --- defint.lisp 6 May 2006 13:44:06 -0000 1.25 +++ defint.lisp 1 Sep 2006 17:21:01 -0000 1.26 @@ -657,8 +657,14 @@ (let ((trans (intcv3 (m// (m+t 'll (m*t 'ul var)) (m+t 1. var)) nil 'yx))) - (setf trans (subst ll 'll trans)) - (setf trans (subst ul 'ul trans)) + ;; If the limit is a number, use $substitute so we simplify + ;; the result. Do we really want to do this? + (setf trans (if (mnump ll) + ($substitute ll 'll trans) + (subst ll 'll trans))) + (setf trans (if (mnump ul) + ($substitute ul 'ul trans) + (subst ul 'ul trans))) (method-by-limits trans var 0. '$inf)) ())) @@ -669,6 +675,9 @@ (t (m+t (eezz (car e) ll ul) (cv (m// (cdr e) dn*))))))) +;; I think this takes a rational expression E, and finds the +;; polynomial part. A cons is returned. The car is the quotient and +;; the cdr is the remainder. (defun pqr (e) (let ((varlist (list var))) (newvar e) @@ -1724,9 +1733,15 @@ (cond ((eq (ask-integer (setq d (let (($float nil)) (m// limit-diff %pi2))) '$integer) '$yes) + ;; This looks wrong. We never multiply by d because of + ;; the return! + #+nil (setq ans (m* d (cond ((setq ans (intsc e %pi2 var)) (return ans)) - (t (return nil))))))) + (t (return nil))))) + (cond ((setq ans (intsc e %pi2 var)) + (return (m* d ans))) + (t (return nil))))) (cond ((ratgreaterp %pi2 b) (return (intsc e b var))) (t (setq l a) |