## maxima-bugs

 [Maxima-bugs] [ maxima-Bugs-3365132 ] Parity of the Bessel functions bessel_j and bessel_i From: SourceForge.net - 2011-07-12 20:31:54 ```Bugs item #3365132, was opened at 2011-07-12 22:31 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3365132&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: Parity of the Bessel functions bessel_j and bessel_i Initial Comment: The parity of the Bessel functions bessel_j and bessel_i is not fully implemented. Maxima knows the rules: bessel_j(-n, z) --> (-1)^n * bessel_j(n, z) bessel_i(-n, z) --> (-1)^n * bessel_i(n, z) for n an integer, but not the rules bessel_j(n, -z) --> (-1)^n * bessel_j(n, z) bessel_i(n, -z) --> (-1)^n * bessel_i(n, z) for n an integer. Maxima version: 5.24post Maxima build date: 21:18 7/11/2011 Host type: i686-pc-linux-gnu Lisp implementation type: SBCL Lisp implementation version: 1.0.45 Simplification for a negative order: (%i1) bessel_j(-1, z); (%o1) -bessel_j(1,z) (%i2) bessel_j(-2, z); (%o2) bessel_j(2,z) But no simplification for a negative argument: (%i3) bessel_j(1, -z); (%o3) bessel_j(1,-z) (%i4) bessel_j(2, -z); (%o4) bessel_j(2,-z) Dieter Kaiser ---------------------------------------------------------------------- You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3365132&group_id=4933 ```