Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
From: SourceForge.net <noreply@so...>  20090605 16:18:50

Bugs item #2801819, was opened at 20090605 11:18 Message generated for change (Tracker Item Submitted) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: spurious Principal Value message Initial Comment: (%i1) assume(p > 0); (%o1) [p>0] OK: (%i4) integrate(exp(p * t^2),t,minf,inf); (%o4) sqrt(%pi)/sqrt(p) OK, but not a principle value: (%i5) integrate(exp(pp * t^2),t,minf,inf); Is pp positive, negative, or zero?pos; Principal Value (%o5) sqrt(%pi)/sqrt(pp)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 
From: SourceForge.net <noreply@so...>  20090605 18:19:05

Bugs item #2801819, was opened at 20090605 16:18 Message generated for change (Comment added) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: spurious Principal Value message Initial Comment: (%i1) assume(p > 0); (%o1) [p>0] OK: (%i4) integrate(exp(p * t^2),t,minf,inf); (%o4) sqrt(%pi)/sqrt(p) OK, but not a principle value: (%i5) integrate(exp(pp * t^2),t,minf,inf); Is pp positive, negative, or zero?pos; Principal Value (%o5) sqrt(%pi)/sqrt(pp)  Comment By: Nobody/Anonymous (nobody) Date: 20090605 18:18 Message: The difference between the two cases is in polesininterval. In the first case, there are no poles in the interval. In the second case, polesininterval thinks there are poles at minf and inf. Hence, maxima thinks we have a principal value integral.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 
From: SourceForge.net <noreply@so...>  20091114 21:45:10

Bugs item #2801819, was opened at 20090605 18:18 Message generated for change (Settings changed) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Pending >Resolution: Works For Me Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: spurious Principal Value message Initial Comment: (%i1) assume(p > 0); (%o1) [p>0] OK: (%i4) integrate(exp(p * t^2),t,minf,inf); (%o4) sqrt(%pi)/sqrt(p) OK, but not a principle value: (%i5) integrate(exp(pp * t^2),t,minf,inf); Is pp positive, negative, or zero?pos; Principal Value (%o5) sqrt(%pi)/sqrt(pp)  >Comment By: Dieter Kaiser (crategus) Date: 20091114 22:45 Message: This problem seems to be no longer present in Maxima 5.19post: (%i2) integrate(exp(pp * t^2),t,minf,inf); Is pp positive, negative, or zero? p; (%o2) sqrt(%pi)/sqrt(pp) Setting the status to pending and resolution to "works for me". Dieter Kaiser  Comment By: Nobody/Anonymous (nobody) Date: 20090605 20:18 Message: The difference between the two cases is in polesininterval. In the first case, there are no poles in the interval. In the second case, polesininterval thinks there are poles at minf and inf. Hence, maxima thinks we have a principal value integral.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 
From: SourceForge.net <noreply@so...>  20091129 02:20:12

Bugs item #2801819, was opened at 20090605 16:18 Message generated for change (Comment added) made by sfrobot You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed Resolution: Works For Me Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: spurious Principal Value message Initial Comment: (%i1) assume(p > 0); (%o1) [p>0] OK: (%i4) integrate(exp(p * t^2),t,minf,inf); (%o4) sqrt(%pi)/sqrt(p) OK, but not a principle value: (%i5) integrate(exp(pp * t^2),t,minf,inf); Is pp positive, negative, or zero?pos; Principal Value (%o5) sqrt(%pi)/sqrt(pp)  >Comment By: SourceForge Robot (sfrobot) Date: 20091129 02:20 Message: This Tracker item was closed automatically by the system. It was previously set to a Pending status, and the original submitter did not respond within 14 days (the time period specified by the administrator of this Tracker).  Comment By: Dieter Kaiser (crategus) Date: 20091114 21:45 Message: This problem seems to be no longer present in Maxima 5.19post: (%i2) integrate(exp(pp * t^2),t,minf,inf); Is pp positive, negative, or zero? p; (%o2) sqrt(%pi)/sqrt(pp) Setting the status to pending and resolution to "works for me". Dieter Kaiser  Comment By: Nobody/Anonymous (nobody) Date: 20090605 18:18 Message: The difference between the two cases is in polesininterval. In the first case, there are no poles in the interval. In the second case, polesininterval thinks there are poles at minf and inf. Hence, maxima thinks we have a principal value integral.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2801819&group_id=4933 