You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(6) 
_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 






1
(4) 
2

3

4

5
(2) 
6
(3) 
7
(2) 
8

9
(3) 
10

11
(7) 
12
(2) 
13
(2) 
14
(2) 
15
(2) 
16
(4) 
17

18
(1) 
19

20
(4) 
21
(4) 
22
(1) 
23
(2) 
24

25
(2) 
26
(3) 
27
(11) 
28

29

30

From: SourceForge.net <noreply@so...>  20120622 16:47:20

Bugs item #3536939, was opened at 20120621 09:04 Message generated for change (Comment added) made by aleksasd You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3536939&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: christoph reineke (chrisrein) Assigned to: Nobody/Anonymous (nobody) Summary: No result for definite integral (II) Initial Comment: Enter in Maxima: integrate(sin(x)/x*log(x),x,0,inf) and Maxima returns: integrate((log(x)*sin(x))/x,x,0,inf) The correct result is: (%pi*gamma)/2, gamma=Euler's constant. build_info("5.27.0","20120424 08:52:03","i686pcmingw32","GNU Common Lisp (GCL)","GCL 2.6.8") Regards Chris  Comment By: Aleksas (aleksasd) Date: 20120622 09:47 Message: Problem: integrate(sin(x)*log(x)/x,x,0,inf) We use laplace integral transformations metrhod. (%i1) declare(integrate,linear)$ (%i2) assume(s>0)$ (%i3) S:'integrate(sin(x)*log(x*a)/x,x,0,inf)$ (%i4) f:first(S); (%o4) (sin(x)*log(a*x))/x (%i5) laplace(%,a,s); (%o5) ((log(x)log(s)%gamma)*sin(x))/(s*x) (%i6) integrate(%,x,0,inf),expand; (%o6) integrate((log(x)*sin(x))/x,x,0,inf)/s(log(s)*integrate(sin(x)/x,x,0,inf))/s(%gamma*integrate(sin(x)/x,x,0,inf))/s (%i7) ev(%, nouns); (%o7) integrate((log(x)*sin(x))/x,x,0,inf)/s(%pi*log(s))/(2*s)(%gamma*%pi)/(2*s) (%i8) eq1:S=ilt(%,s,a); (%o8) integrate((sin(x)*log(a*x))/x,x,0,inf)=integrate((log(x)*sin(x))/x,x,0,inf)+ilt((%pi*log(s))/(2*s),s,a)+(%gamma*%pi)/2 (%i9) S1:'integrate(sin(a*x)*log(x)/x,x,0,inf)$ (%i10) f:first(S1); (%o10) (log(x)*sin(a*x))/x (%i11) laplace(%,a,s); (%o11) log(x)/(x^2+s^2) (%i12) integrate(%,x,0,inf); (%o12) (%pi*log(s))/(2*s) (%i13) eq2:S1=ilt(%,s,a); (%o13) integrate((log(x)*sin(a*x))/x,x,0,inf)=ilt((%pi*log(s))/(2*s),s,a) (%i14) subst(a=1,[eq1,eq2]); (%o14) [integrate((log(x)*sin(x))/x,x,0,inf)=integrate((log(x)*sin(x))/x,x,0,inf)+ilt((%pi*log(s))/(2*s),s,1)+(%gamma*%pi)/2,integrate((log(x)*sin(x))/x,x,0,inf)=ilt((%pi*log(s))/(2*s),s,1)] (%i15) solve(%,[integrate((log(x)*sin(x))/x,x,0,inf),ilt((%pi*log(s))/(2*s),s,1)]); (%o15) [[integrate((log(x)*sin(x))/x,x,0,inf)=(%gamma*%pi)/2,ilt((%pi*log(s))/(2*s),s,1)=(%gamma*%pi)/2]] (%i16) solution:%[1][1]; (%o16) integrate((log(x)*sin(x))/x,x,0,inf)=(%gamma*%pi)/2 Best Aleksas D  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3536939&group_id=4933 