You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 






1
(4) 
2

3

4

5
(2) 
6
(3) 
7
(2) 
8

9
(3) 
10

11
(7) 
12
(2) 
13
(2) 
14
(2) 
15
(2) 
16
(4) 
17

18
(1) 
19

20
(4) 
21
(4) 
22
(1) 
23
(2) 
24

25
(2) 
26
(3) 
27
(11) 
28

29

30

From: SourceForge.net <noreply@so...>  20120616 13:28:52

Bugs item #3512437, was opened at 20120328 08:44 Message generated for change (Settings changed) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3512437&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Lisp Core  Limit Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Aleksas (aleksasd) Assigned to: Nobody/Anonymous (nobody) Summary: wrong limit Initial Comment: (%i1) f:((9*x)^(1/3)3)/(sqrt(3+x)sqrt(2*x)); (%o1) (9^(1/3)*x^(1/3)3)/(sqrt(x+3)sqrt(2)*sqrt(x)) wrong: (%i2) limit(f,x,3); (%o2) 0 correct: (%i3) algebraic:true; (%o3) true (%i4) radcan(f); (%o4) ((3^(2/3)*x^(1/3)3)*sqrt(x+3)+sqrt(2)*3^(2/3)*x^(5/6)3*sqrt(2)*sqrt(x))/(x3) (%i5) limit(%,x,3); (%o5) (sqrt(6)+sqrt(2)*sqrt(3))/3 (%i6) radcan(%); (%o6) 2^(3/2)/sqrt(3) Aleksas D  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3512437&group_id=4933 
From: SourceForge.net <noreply@so...>  20120616 12:28:09

Bugs item #3512937, was opened at 20120329 12:33 Message generated for change (Settings changed) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3512937&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: None >Status: Closed >Resolution: Works For Me Priority: 5 Private: No Submitted By: redneb8888 () Assigned to: Nobody/Anonymous (nobody) Summary: incorect limit Initial Comment: The following limit(((t+1)^kt^kk*t^(k1)(k*(k1)/2)*t^(k2))/t^(k3),t,inf) returns 0 instead of the correct answer k*(k1)*(k2)/6 (from the binomial expansion of (t+1)^k). tlimit gives the correct answer.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3512937&group_id=4933 
From: SourceForge.net <noreply@so...>  20120616 12:26:26

Bugs item #3534858, was opened at 20120613 05:32 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3534858&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: To be reviewed >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Chris (chrishalliwell) Assigned to: Nobody/Anonymous (nobody) Summary: Calculus mistake: wrong answer: limit Initial Comment: Maxima version: 5.27.0 limit((sin(x)tan(x))/(x*(cos(x)1)),x,0); gives 0, but should be 1 and limit((sin(x)tan(x))/(x^2*(cos(x)1)),x,0); gives 0, but should be infinity (+ at + and  at  inf)  >Comment By: Dan Gildea (dgildea) Date: 20120616 05:26 Message: Fixed in limit.lisp.  Comment By: Chris (chrishalliwell) Date: 20120614 04:30 Message: So is this important to be fixed or we will leave this fot the users to be careful with trigonometric function limits? I think that limit should always use trigsimp and all remaining simplify functions to maximize probability of getting correct value.  Comment By: Raymond Toy (rtoy) Date: 20120613 19:27 Message: limit most likely gets it wrong because it doesn't see that the expression is the same as sin(x)/cos(x)/x. (trigsimp produces this.) Then limit is correct. tlimit produces the correct limit.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3534858&group_id=4933 
From: SourceForge.net <noreply@so...>  20120616 11:19:57

Bugs item #3535473, was opened at 20120615 07:05 Message generated for change (Comment added) made by chrisrein You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3535473&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None >Status: Open Resolution: Wont Fix Priority: 5 Private: No Submitted By: christoph reineke (chrisrein) Assigned to: Nobody/Anonymous (nobody) Summary: Simplification/Infinite sum Initial Comment: Enter in Maxima: simplify_sum(sum(n^2/(2*n)!,n,1,inf)); Maxima returns: (sqrt(%pi)*(sqrt(2)*bessel_i(3/2,1)+2^(3/2)*bessel_i(1/2,1)))/8 Maxima should return: %e/4 build_info("5.27.0","20120424 08:52:03","i686pcmingw32","GNU Common Lisp (GCL)","GCL 2.6.8") Regards Chris  >Comment By: christoph reineke (chrisrein) Date: 20120616 04:19 Message: Thanks for your help! Yes, if you are a specialist, it’s quite simple. If not, you have a problem. First you notice that all simplifications in the pull down menu of wx Maxima fail. Then you have to read a chapter about Bessel functions until you find “besselexpand”. After applying “besselexpand”, Maxima returns a sum of hyperbolic functions. Now you need “exponentialize” to get a sum of e functions and finally you see %e/4. Why do I have to do all these things? If I enter sum(n^2/(2*n)!,n,1,inf) in Wolfram Alpha I immediately get the correct result. <marking as pending/wontfix> Ok. Thanks again Chris  Comment By: Raymond Toy (rtoy) Date: 20120615 10:51 Message: expand(exponentialize(ev(%,besselexpand=true))) > %e/4 I only knew to try this because bessel_i with half integer orders have representations in elementary functions, which you get by setting besselexpand to true. Marking as pending/wontfix  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3535473&group_id=4933 