You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(36) 
_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(3) 
2
(2) 
3
(6) 
4
(2) 
5

6
(1) 
7
(1) 
8
(2) 
9
(2) 
10

11

12

13

14
(1) 
15
(2) 
16

17

18

19

20
(1) 
21

22

23

24

25

26

27

28

29

30
(3) 
31
(2) 
From: SourceForge.net <noreply@so...>  20111208 15:14:24

Bugs item #3443554, was opened at 20111127 15:31 Message generated for change (Comment added) made by jensenripley You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3443554&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Ripley (jensenripley) Assigned to: Nobody/Anonymous (nobody) Summary: Tío different results for an integral Initial Comment: Hello, By integrating sqrt(4*x^2y^2) into the triangle {0<x<1; 0<y<x} in two diffferent order: integrate( integrate( sqrt(4*x^2y^2), x , y, 1), y , 0,1) Integrate( integrate( sqrt(4*x^2y^2), y, 0, x), x, 0,1) WxMaxime give two different results. Where is the mistake?  >Comment By: Ripley (jensenripley) Date: 20111208 07:14 Message: I couldn't realize that is simply a mistake... So, should I assume Maxima integrator subroutines aren't trustworthy? I like Maxima but it is not admissible for me to work with a not trusty "scientific" software... Could someone give a hand to have any reference to how Maxima manage integrals internally? I am going to do my best to find the bug...  Comment By: Raymond Toy (rtoy) Date: 20111130 11:05 Message: I have looked very briefly at this. The intermediate indefinite integrals look right, and maxima says the derivative simplifies to the integrand, so I don't really know what's wrong. I think the thing to do is to examine whether the indefinite integrals are actually correct. There could be a problem with choosing the wrong branch since one of the integrals involves inverse trig functions.  Comment By: jcvtrip (jcvtrip) Date: 20111130 09:27 Message: Please, some help on this question? Any comment would be helpful...  Comment By: jcvtrip (jcvtrip) Date: 20111128 10:01 Message: Hello, Here you have a transcript... Maxima version: 5.25.1 Maxima build date: 9:14 9/5/2011 Host type: i686appledarwin10.8.0 Lisp implementation type: SBCL Lisp implementation version: 1.0.47 expres:sqrt(4*x^2y^2); (%o5) sqrt(4*x^2y^2) integrate(integrate(expres, x,y,1),y,0,1); "Is "y1" positive, negative, or zero?"n; "Is "y" positive or negative?"p; (%o6) (3*log(4*sqrt(3)+8)+4*%pi1)/18 ev(%o6,numer); (%o12) 1.093118188249627 integrate(integrate(expres, y, 0,x),x,0,1); "Is "x" positive, negative, or zero?"p; (%o10) (2*%pi+3^(3/2))/18 ev(%o10,numer); (%o13) .6377409849936787  Comment By: Ripley (jensenripley) Date: 20111128 08:28 Message: Thank you rswarbrick but you mistaked the input line ( % i3)... You wrote Integrate(integrate(expr, x,0, x), x,0,1) instead of Integrate(integrate(expr, y, 0, x) ,x ,0,1)  Comment By: Rupert Swarbrick (rswarbrick) Date: 20111128 01:15 Message: Drat. I didn't realise that sourceforge would eat the text formatting. If it isn't clear, the first time I get an answer with logs and sqrts. The second time, I get a more complicated integrate noun form.  Comment By: Rupert Swarbrick (rswarbrick) Date: 20111128 01:13 Message: With a recent version of the sources, I get the following: Maxima 5.25post http://maxima.sourceforge.net using Lisp SBCL 1.0.53.0.debian Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) expr: sqrt(4*x^2y^2); 2 2 (%o1) sqrt(4 x  y ) (%i2) integrate(integrate(expr, x, y, 1), y, 0, 1); Is y  1 positive, negative, or zero? n; Is y positive or negative? pos; 3 log(4 sqrt(3) + 8) + 4 %pi  1 (%o2)  18 (%i3) integrate(integrate(expr, x, 0, x), x, 0, 1); Is x positive, negative, or zero? pos; Is y positive or negative? pos; rat: replaced 1.e8 by 1/100000000 = 1.e8 <snip lots more rat warnings: eugh.> Is y positive or negative? pos; 1 / 2 2 2 2 [ y log(4 sqrt(4 x  y ) + 8 x) y log(4 %i y) (%o3) I (  +  ] 4 4 / 0 2 2 x sqrt(4 x  y ) + ) dx 2 This, while unhelpful isn't wrong. Can you post a transcript of what you actually do and get (use maxima from the command line, maybe). Definitely include the version of Maxima that you're using. Rupert  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3443554&group_id=4933 
From: SourceForge.net <noreply@so...>  20111208 12:59:33

Bugs item #3454370, was opened at 20111208 04:59 Message generated for change (Tracker Item Submitted) made by You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3454370&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: https://www.google.com/accounts () Assigned to: Nobody/Anonymous (nobody) Summary: integrate erf fails Initial Comment: I use maxima 5.25.1 on opensuse 11.3. If h(x,a,b):=erf((x+a)/(b*sqrt(2)))erf((xa)/(b*sqrt(2))); C(a,b):=integrate(h(x,a,b),x,inf,inf); then, C(a,1); I got 0, but with maxima 5.24.0 I got 4a.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3454370&group_id=4933 