Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(39) 
_{Oct}
(30) 
_{Nov}
(75) 
_{Dec}
(28) 
2018 
_{Jan}
(63) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(2) 
2

3

4
(2) 
5

6

7

8
(1) 
9
(1) 
10
(2) 
11

12

13
(4) 
14
(4) 
15

16
(4) 
17
(2) 
18
(10) 
19
(1) 
20
(1) 
21
(1) 
22

23

24

25
(5) 
26

27
(1) 
28
(7) 
29

30
(2) 



From: SourceForge.net <noreply@so...>  20111113 14:49:08

Bugs item #3437268, was opened at 20111113 02:45 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437268&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: expand doesn't fully expand Initial Comment: (%i1) (atan((sqrt(2)*sin(8))/cos(8))+3*%pi)/sqrt(2)+atan((sqrt(2)*sin(8))/cos(8))/sqrt(2)+sqrt(2)*%pi+%pi/sqrt(2); (%o1) atan((sqrt(2)*sin(8))/cos(8))/sqrt(2)+(atan((sqrt(2)*sin(8))/cos(8))3*%pi)/sqrt(2)+sqrt(2)*%pi+%pi/sqrt(2) (%i2) expand(%); (%o2) sqrt(2)*%pisqrt(2)*%pi (%i3) expand(%); (%o3) 0 (%i5) build_info(); Maxima version: 5.25.0 Maxima build date: 16:14 8/15/2011 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8 (%o5)  >Comment By: Dieter Kaiser (crategus) Date: 20111113 06:49 Message: Some further remarks. The problem does not occur for numbers: (%i1) 3/sqrt(2)+sqrt(2)+1/sqrt(2); (%o1) 0 We have to multiply an additional constant into the sum: (%i4) 3*a/sqrt(2)+a*sqrt(2)+a/sqrt(2); (%o4) sqrt(2)*asqrt(2)*a Changing slightly the order gives the expected result: (%i5) a/sqrt(2)3*a/sqrt(2)+a*sqrt(2); (%o5) 0 The problem is, that the algorithm of plusin correctly simplifies: (%i7) 3*a/sqrt(2)+a/sqrt(2); (%o7) sqrt(2)*a But the algorithm does not look at the previous terms, which have already been put on the list of results and therefore the algorithm does not see that their is already a term sqrt(2)*a. The main problem here is, that the algorithm for a sum and a product are implemented as nary algorithm. A much more simple binary algorithm would not have these problems. But of course it would be much slower for a lot of other problems. I will think about a solution oft this problem. By the way: This is an old problem. In older versions of Maxima, e.g. Maxima 5.10 we get: (%i1) 3/sqrt(2)+sqrt(2)+1/sqrt(2); (%o1) sqrt(2)2/sqrt(2) (%i2) 3*a/sqrt(2)+a*sqrt(2)+a/sqrt(2); (%o2) sqrt(2)*a2*a/sqrt(2) (%i3) a/sqrt(2)3*a/sqrt(2)+a*sqrt(2); (%o3) sqrt(2)*a2*a/sqrt(2) This older version does not simplify 2/sqrt(2) to sqrt(2). Therefore, the problem might be not so obvious. Dieter Kaiser  Comment By: Dieter Kaiser (crategus) Date: 20111113 04:42 Message: This is a shorter example of the above problem: (%i3) sqrt(2)*%pi3*%pi/sqrt(2)+%pi/sqrt(2); (%o3) sqrt(2)*%pisqrt(2)*%pi Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437268&group_id=4933 
From: SourceForge.net <noreply@so...>  20111113 12:42:55

Bugs item #3437268, was opened at 20111113 02:45 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437268&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: expand doesn't fully expand Initial Comment: (%i1) (atan((sqrt(2)*sin(8))/cos(8))+3*%pi)/sqrt(2)+atan((sqrt(2)*sin(8))/cos(8))/sqrt(2)+sqrt(2)*%pi+%pi/sqrt(2); (%o1) atan((sqrt(2)*sin(8))/cos(8))/sqrt(2)+(atan((sqrt(2)*sin(8))/cos(8))3*%pi)/sqrt(2)+sqrt(2)*%pi+%pi/sqrt(2) (%i2) expand(%); (%o2) sqrt(2)*%pisqrt(2)*%pi (%i3) expand(%); (%o3) 0 (%i5) build_info(); Maxima version: 5.25.0 Maxima build date: 16:14 8/15/2011 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8 (%o5)  >Comment By: Dieter Kaiser (crategus) Date: 20111113 04:42 Message: This is a shorter example of the above problem: (%i3) sqrt(2)*%pi3*%pi/sqrt(2)+%pi/sqrt(2); (%o3) sqrt(2)*%pisqrt(2)*%pi Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437268&group_id=4933 
From: SourceForge.net <noreply@so...>  20111113 10:45:26

Bugs item #3437268, was opened at 20111113 02:45 Message generated for change (Tracker Item Submitted) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437268&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: expand doesn't fully expand Initial Comment: (%i1) (atan((sqrt(2)*sin(8))/cos(8))+3*%pi)/sqrt(2)+atan((sqrt(2)*sin(8))/cos(8))/sqrt(2)+sqrt(2)*%pi+%pi/sqrt(2); (%o1) atan((sqrt(2)*sin(8))/cos(8))/sqrt(2)+(atan((sqrt(2)*sin(8))/cos(8))3*%pi)/sqrt(2)+sqrt(2)*%pi+%pi/sqrt(2) (%i2) expand(%); (%o2) sqrt(2)*%pisqrt(2)*%pi (%i3) expand(%); (%o3) 0 (%i5) build_info(); Maxima version: 5.25.0 Maxima build date: 16:14 8/15/2011 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8 (%o5)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437268&group_id=4933 
From: SourceForge.net <noreply@so...>  20111113 04:02:44

Bugs item #3437139, was opened at 20111112 20:02 Message generated for change (Tracker Item Submitted) made by donwinsor You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437139&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Don Winsor (donwinsor) Assigned to: Nobody/Anonymous (nobody) Summary: Failure to evaluate definite integral Initial Comment: Hello Maxima team, The following definite integral (and some similar ones) fails to evaluate: integrate(1/(sqrt(x)*((1+sqrt(x))^2)),x,1,4); This seems strange as maxima has no problem finding the corresponding indefinite integral, and evaluating that at the limits is straightforward. Record of a session is below. Any ideas on what might be causing this? Don Winsor University of Michigan Maxima 5.25.1 http://maxima.sourceforge.net using Lisp CLISP 2.49 (20100707) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) 2 (%o1)   sqrt(x) + 1 (%i2) 4 / [ 1 (%o2) I  dx ] 2 / (sqrt(x) + 1) sqrt(x) 1 (%i3)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3437139&group_id=4933 