You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(32) 
_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(1) 
2
(1) 
3
(2) 
4
(2) 
5
(2) 
6
(1) 
7
(1) 
8
(2) 
9
(1) 
10

11

12
(9) 
13
(1) 
14
(3) 
15
(4) 
16
(2) 
17
(5) 
18

19

20

21
(1) 
22

23
(3) 
24
(5) 
25

26
(3) 
27

28

29
(2) 
30
(1) 
31



From: SourceForge.net <noreply@so...>  20110308 12:27:40

Bugs item #3202926, was opened at 20110308 13:21 Message generated for change (Comment added) made by pangard You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3202926&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: PAngArd (pangard) Assigned to: Nobody/Anonymous (nobody) Summary: simplify_sum gives wrong answer for sum related to poisson.. Initial Comment: The following should give the variance of a poisson RV with parameter lambda=4 (it should be 4) (%i98) simplify_sum(sum(%e^4*(k4)^2*4^k/k!, k, 0, inf));  4 284 %e (%o98)  3 What's amazing is that if (k4)^2 is split, then the individual results are all correct: (%i99) simplify_sum(sum(%e^4*k^2*4^k/k!, k, 0, inf)); (%o99) 20 (%i100) simplify_sum(sum(%e^4*k*4^k/k!, k, 0, inf)); (%o100) 4 (%i101) simplify_sum(sum(%e^4*4^k/k!, k, 0, inf)); (%o101) 1 And the completely symbolic sum is also correct: (%i102) simplify_sum(sum(%e^l*(kl)^2*l^k/k!, k, 0, inf)); (%o102) l Some similar sum produce correct results: (%i106) simplify_sum(sum(%e^4*(k2)^2*4^k/k!, k, 0, inf));  4 (%o106) 8 %e while others do not: (%i104) simplify_sum(sum(%e^4*(k5)^2*4^k/k!, k, 0, inf));  4 643 %e (%o104)  3 I couldn't find a pattern!  >Comment By: PAngArd (pangard) Date: 20110308 13:27 Message: Ooops, the report above has some issues: * output is not formatted, the wrong answer for the first command is: (284/3)*%e^(4) * I claimed that the result of simplify_sum(sum(%e^4*(k2)^2*4^k/k!, k, 0, inf)); was correct, but it is not. The correct result is 8, not 8%e^(4). However, the random behaviour persists: A correct result: (%i110) simplify_sum(sum(%e^4*(k^215)*4^k/k!, k, 0, inf)); (%o110) 5 An incorrect result: (%i109) simplify_sum(sum(%e^4*(k^216)*4^k/k!, k, 0, inf)); (740/3)%e^(4)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3202926&group_id=4933 
From: SourceForge.net <noreply@so...>  20110308 12:21:35

Bugs item #3202926, was opened at 20110308 13:21 Message generated for change (Tracker Item Submitted) made by pangard You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3202926&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: PAngArd (pangard) Assigned to: Nobody/Anonymous (nobody) Summary: simplify_sum gives wrong answer for sum related to poisson.. Initial Comment: The following should give the variance of a poisson RV with parameter lambda=4 (it should be 4) (%i98) simplify_sum(sum(%e^4*(k4)^2*4^k/k!, k, 0, inf));  4 284 %e (%o98)  3 What's amazing is that if (k4)^2 is split, then the individual results are all correct: (%i99) simplify_sum(sum(%e^4*k^2*4^k/k!, k, 0, inf)); (%o99) 20 (%i100) simplify_sum(sum(%e^4*k*4^k/k!, k, 0, inf)); (%o100) 4 (%i101) simplify_sum(sum(%e^4*4^k/k!, k, 0, inf)); (%o101) 1 And the completely symbolic sum is also correct: (%i102) simplify_sum(sum(%e^l*(kl)^2*l^k/k!, k, 0, inf)); (%o102) l Some similar sum produce correct results: (%i106) simplify_sum(sum(%e^4*(k2)^2*4^k/k!, k, 0, inf));  4 (%o106) 8 %e while others do not: (%i104) simplify_sum(sum(%e^4*(k5)^2*4^k/k!, k, 0, inf));  4 643 %e (%o104)  3 I couldn't find a pattern!  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3202926&group_id=4933 