Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(39) 
_{Oct}
(30) 
_{Nov}
(75) 
_{Dec}
(28) 
2018 
_{Jan}
(70) 
_{Feb}

_{Mar}

_{Apr}
(1) 
_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(1) 
2
(1) 
3
(2) 
4
(2) 
5
(2) 
6
(1) 
7
(1) 
8
(2) 
9
(1) 
10

11

12
(9) 
13
(1) 
14
(3) 
15
(4) 
16
(2) 
17
(5) 
18

19

20

21
(1) 
22

23
(3) 
24
(5) 
25

26
(3) 
27

28

29
(2) 
30
(1) 
31



From: SourceForge.net <noreply@so...>  20110313 11:07:32

Bugs item #3199638, was opened at 20110304 16:07 Message generated for change (Comment added) made by ssllvv You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3199638&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: dstanislav (ssllvv) Assigned to: Nobody/Anonymous (nobody) Summary: integrate_sqrt_of_trig Initial Comment: (%i1) integrate(sqrt(1cos(x)^2),x,0,%pi/2); (%o1)  1 ( right answer: 1 ) (%i2) integrate(sqrt(1sin(x)^2),x,0,%pi/2); Is tan(x) positive or negative?p; (%o2)  1 ( right answer: 1 )  Maxima version: 5.23.2 Maxima build date: 17:9 1/17/2011 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8   >Comment By: dstanislav (ssllvv) Date: 20110313 13:07 Message: Unfortunately, option radexpand:false does not give a right results: (%i1) radexpand:false; (%o1) false(%i2) integrate(sqrt(1cos(x)^2),x,0,%pi); (%o2) 0 (wrong) (%i3) integrate(abs(sin(x)),x,0,%pi); (%o3) 2 (right, but occasionally) (%i4) integrate(sqrt(1cos(x)^2),x,0,2*%pi); (%o4) 0 (wrong) (%i5) integrate(abs(sin(x)),x,0,2*%pi); (%o5) 0 (wrong) (%i6) wxplot2d(sqrt(1cos(t)^2),[t,0,2*%pi],[x,1,7],[y,2,2]); (%t6) << Graphics >> (%i7) integrate(sqrt(1sin(x)^2),x,0,%pi); (%o7) 0 (wrong) (%i8) integrate(abs(cos(x)),x,0,%pi); (%o8) integrate(abs(cos(x)),x,0,%pi) (no action)  Comment By: Dieter Kaiser (crategus) Date: 20110312 22:35 Message: Both examples are correct, when setting the option variable radexpand to false: (%i1) radexpand:false$ (%i2) integrate(sqrt(1cos(x)^2),x,0,%pi/2); (%o2) 1 (%i3) integrate(sqrt(1sin(x)^2),x,0,%pi/2); (%o3) 1 By the way, the indefinite integrals are more correct too: (%i4) integrate(sqrt(1cos(x)^2),x); (%o4) 1/sqrt(tan(x)^2+1) (%i5) integrate(sqrt(1sin(x)^2),x); (%o5) tan(x)/sqrt(tan(x)^2+1) I think it is a general problem, that the option variable radexpand introduces wrong simplifications. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3199638&group_id=4933 