You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(20) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 




1

2

3
(3) 
4
(1) 
5

6

7
(1) 
8

9
(2) 
10
(1) 
11

12

13
(2) 
14

15
(1) 
16
(1) 
17
(2) 
18

19

20

21

22

23

24

25

26

27

28
(1) 
29

30

31
(1) 

From: SourceForge.net <noreply@so...>  20101217 22:20:09

Bugs item #3113715, was opened at 20101120 18:05 Message generated for change (Settings changed) made by sfrobot You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3113715&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None >Status: Closed Resolution: Invalid Priority: 5 Private: No Submitted By: JeanBaptiste Heyberger (jbhoen) Assigned to: Nobody/Anonymous (nobody) Summary: linsolve solution pb Initial Comment: I use maxima 5.22.1 My commands are successively: Eq5 : c3*x006+c5*(x001)**2c4*x001/3+c2*x001/3+x001 = 0; linsolve([Eq5], [x001]); The unexpected result is : [x001=(3*c3*x006)/(c4c23)]  >Comment By: SourceForge Robot (sfrobot) Date: 20101217 22:20 Message: This Tracker item was closed automatically by the system. It was previously set to a Pending status, and the original submitter did not respond within 14 days (the time period specified by the administrator of this Tracker).  Comment By: Dieter Kaiser (crategus) Date: 20101203 21:49 Message: The function linsolve is documented to solve a set of linear equations. I think, the function solve gives the expected solutions as reported in the last posting: (%i5) Eq5 : c3*x006+c5*(x001)**2c4*x001/3+c2*x001/3+x001 = 0$ (%i6) solve([Eq5],[x001]); (%o6) [x001 = (sqrt(36*c3*c5*x006+c4^2+(2*c26)*c4+c2^2+6*c2+9)c4+c2+3) /(6*c5), x001 = (sqrt(36*c3*c5*x006+c4^2+(2*c26)*c4+c2^2+6*c2+9)+c4c23) /(6*c5)] Setting the status to pending and the resolution to invalid. Dieter Kaiser  Comment By: Barton Willis (willisbl) Date: 20101121 11:45 Message: The function linsolve does not check that the equation is linear. Try using solve instead of linsolve.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3113715&group_id=4933 
From: SourceForge.net <noreply@so...>  20101217 20:20:05

Bugs item #3123933, was opened at 20101130 22:29 Message generated for change (Settings changed) made by sfrobot You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3123933&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None >Status: Closed Resolution: Works For Me Priority: 5 Private: No Submitted By: quwerty (doe140) Assigned to: Nobody/Anonymous (nobody) Summary: Incorrect solution to equation Initial Comment: I have the foolowing code: c:3e+8$ mu_r1:1$ mu_r2:1$ sigma_1:0$ sigma_2:0$ eps_r1:3.3$ eps_r2:1.6$ h:1e6$ f:180e+12$ P2:0.01e3$ eps_0:8.85e12$ mu_0:4*%pi*1e7$ eps_a1:eps_r1*eps_0$ eps_a2:eps_r2*eps_0$ mu_a1:mu_0*mu_r1$ mu_a2:mu_0*mu_r2$ omega:2*%pi*f$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ kill(x, y)$ x:find_root(sqrt(omega^2*h^2*(eps_a1*mu_a1eps_a2*mu_a2)x^2)+eps_a2/eps_a1*x*tan(x)=0, x, 0, 5); y:float(sqrt(omega^2*h^2*(eps_a1*mu_a1eps_a2*mu_a2)%^2)); y1:float(eps_a2/eps_a1*x*tan(x))$ With these limits y!=y1. If I run x:find_root(..., x, 1.7, 2); I get correct answer. This seems a little strange. May this be of tan(x)'s behaviour at x=%pi/2?  >Comment By: SourceForge Robot (sfrobot) Date: 20101217 20:20 Message: This Tracker item was closed automatically by the system. It was previously set to a Pending status, and the original submitter did not respond within 14 days (the time period specified by the administrator of this Tracker).  Comment By: Dieter Kaiser (crategus) Date: 20101203 20:03 Message: At first, it is very helpful to have a small example. I think the function of interest for this example is eqn: 0.4848484848484849*x*tan(x)+sqrt(0.7799327999999998*%pi^3x^2) One important and documented restriction of the algorithm of find_root is, that the function has to be continuous over the interval, which is given as an argument to find_root. If I do a plot of the function for the interval [0,5] with the command plot2d(eqn,[x,0,5],[y,100,100]) I can see that the function is not continuous at two points and that the function has one root. Furthermore, the root is near the value 1.75. If I take the function of this example and the interval [1.6,2.0] I get the desired root: (%i1) eqn:.4848484848484849*x*tan(x)+sqrt(.7799327999999998*%pi^3x^2); (%o1) .4848484848484849*x*tan(x)+sqrt(.7799327999999998*%pi^3x^2) This is the root of the equation: (%i2) result:find_root(eqn,x,1.6,2); (%o2) 1.753812411159384 Backsubstitution shows that the result is a root within an expected accuracy (%i3) float(subst(result,x,eqn)); (%o3) 1.77635683940025e15 The algorithm of find_root fails in the interval [0,5] because the function is not continuous over the interval. I think we do not have a bug. The numerical routine find_root has documented limitations. Setting the status to pending and the resolution to "works for me". Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3123933&group_id=4933 