You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(12) 
_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 






1

2
(17) 
3
(2) 
4
(5) 
5
(2) 
6
(4) 
7
(1) 
8
(1) 
9
(1) 
10
(4) 
11
(1) 
12
(6) 
13
(1) 
14

15

16

17

18
(1) 
19
(7) 
20
(3) 
21
(1) 
22

23
(5) 
24
(3) 
25
(4) 
26
(2) 
27

28

29
(3) 
30

31
(9) 






From: SourceForge.net <noreply@so...>  20101023 22:17:17

Bugs item #3093408, was opened at 20101023 03:01 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: jrredford (jrredford) Assigned to: Nobody/Anonymous (nobody) Summary: Bug in simplify_sum Initial Comment: On p. 876 of the PDF version of the Maxima Manual, Ver. 5.22 on the Maxima website, it gives an example of simplify_sum. But when I follow the example, the simplification doesn't work, contrary to what is shown in the manual. Below is the result I get: (%i1) display2d:false; (%o1) false (%i2) load("simplify_sum"); (%o2) "C:/program1/maxima/share/maxima/5.22.1/share/contrib/solve_rec/simplify_s um.mac" (%i3) sum(binom(n+k,k)/2^k, k, 0, n) + sum(binom(2*n, 2*k), k, 0, n); (%o3) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i4) simplify_sum(%); (%o4) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i5) Below is the Maxima version I'm using: Maxima version: 5.22.1 Maxima build date: 11:48 8/13/2010 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  >Comment By: Dieter Kaiser (crategus) Date: 20101024 00:17 Message: The reported problem is a documentation error. The function simplify_sum gives a different, but equivalent answer since Maxima 5.16. I think the initial revision of simply_sum is Maxima 5.13. I can reproduce the documented result for Maxima 5.13 until Maxima 5.15. The alias binom for the function binomial has been cut out with revision 1.86 of suprv.lisp and is not present since Maxima 5.20. Dieter Kaiser  Comment By: jrredford (jrredford) Date: 20101023 22:30 Message: Hi, Rtoy. That's the result I get when using binomial: (%i2) sum(binomial(n+k,k)/2^k, k, 0, n) + sum(binomial(2*n, 2*k), k, 0, n); (%o2) 'sum(binomial(n+k,k)/2^k,k,0,n)+'sum(binomial(2*n,2*k),k,0,n) (%i3) simplify_sum(%); Is n positive or zero? p; (%o3) 2^(2*n1)+2^n (%i4) simplify_sum(%o2); Is n positive or zero? z; (%o4) 2^(2*n1)+2^n (%i5) Page 878 of the aforecited Maxima Manual also uses "binom".  Comment By: Raymond Toy (rtoy) Date: 20101023 05:26 Message: Maybe binom should be binomial. When I do that, simplify_sum gives 2^(2n1)+2^n. So this is probably a documentation bug.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 
From: SourceForge.net <noreply@so...>  20101023 20:30:25

Bugs item #3093408, was opened at 20101023 01:01 Message generated for change (Comment added) made by jrredford You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: jrredford (jrredford) Assigned to: Nobody/Anonymous (nobody) Summary: Bug in simplify_sum Initial Comment: On p. 876 of the PDF version of the Maxima Manual, Ver. 5.22 on the Maxima website, it gives an example of simplify_sum. But when I follow the example, the simplification doesn't work, contrary to what is shown in the manual. Below is the result I get: (%i1) display2d:false; (%o1) false (%i2) load("simplify_sum"); (%o2) "C:/program1/maxima/share/maxima/5.22.1/share/contrib/solve_rec/simplify_s um.mac" (%i3) sum(binom(n+k,k)/2^k, k, 0, n) + sum(binom(2*n, 2*k), k, 0, n); (%o3) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i4) simplify_sum(%); (%o4) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i5) Below is the Maxima version I'm using: Maxima version: 5.22.1 Maxima build date: 11:48 8/13/2010 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  >Comment By: jrredford (jrredford) Date: 20101023 20:30 Message: Hi, Rtoy. That's the result I get when using binomial: (%i2) sum(binomial(n+k,k)/2^k, k, 0, n) + sum(binomial(2*n, 2*k), k, 0, n); (%o2) 'sum(binomial(n+k,k)/2^k,k,0,n)+'sum(binomial(2*n,2*k),k,0,n) (%i3) simplify_sum(%); Is n positive or zero? p; (%o3) 2^(2*n1)+2^n (%i4) simplify_sum(%o2); Is n positive or zero? z; (%o4) 2^(2*n1)+2^n (%i5) Page 878 of the aforecited Maxima Manual also uses "binom".  Comment By: Raymond Toy (rtoy) Date: 20101023 03:26 Message: Maybe binom should be binomial. When I do that, simplify_sum gives 2^(2n1)+2^n. So this is probably a documentation bug.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 
From: SourceForge.net <noreply@so...>  20101023 03:26:30

Bugs item #3093408, was opened at 20101022 21:01 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: jrredford (jrredford) Assigned to: Nobody/Anonymous (nobody) Summary: Bug in simplify_sum Initial Comment: On p. 876 of the PDF version of the Maxima Manual, Ver. 5.22 on the Maxima website, it gives an example of simplify_sum. But when I follow the example, the simplification doesn't work, contrary to what is shown in the manual. Below is the result I get: (%i1) display2d:false; (%o1) false (%i2) load("simplify_sum"); (%o2) "C:/program1/maxima/share/maxima/5.22.1/share/contrib/solve_rec/simplify_s um.mac" (%i3) sum(binom(n+k,k)/2^k, k, 0, n) + sum(binom(2*n, 2*k), k, 0, n); (%o3) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i4) simplify_sum(%); (%o4) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i5) Below is the Maxima version I'm using: Maxima version: 5.22.1 Maxima build date: 11:48 8/13/2010 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  >Comment By: Raymond Toy (rtoy) Date: 20101022 23:26 Message: Maybe binom should be binomial. When I do that, simplify_sum gives 2^(2n1)+2^n. So this is probably a documentation bug.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 
From: SourceForge.net <noreply@so...>  20101023 01:23:27

Bugs item #3093422, was opened at 20101023 01:23 Message generated for change (Tracker Item Submitted) made by jrredford You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093422&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: jrredford (jrredford) Assigned to: Nobody/Anonymous (nobody) Summary: Bug in mnewton Initial Comment: If maximainit.mac has fpprec:32; or higher precision, then the below happens: (%i1) load(mnewton); (%o1) C:/program1/maxima/share/maxima/5.22.1/share/contrib/mnewton.mac (%i2) mnewton(cos(x)=1/2,x,0.99); mnewton: the process doesn't converge or it converges too slowly. (%o2) [] (%i3) If one then changes fpprec: in the interactive session, it has no effect: mnewton still won't work with cos(x). Yet in the interactive session, if maximainit.mac has fpprec:31; or lower precision, one can set fpprec: much higher and mnewton will work. This bug with mnewton does not occur with sin(x), tan(x) or atan(x), which are some examples I tried. Below is the Maxima version I'm using: Maxima version: 5.22.1 Maxima build date: 11:48 8/13/2010 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093422&group_id=4933 
From: SourceForge.net <noreply@so...>  20101023 01:01:13

Bugs item #3093408, was opened at 20101023 01:01 Message generated for change (Tracker Item Submitted) made by jrredford You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: jrredford (jrredford) Assigned to: Nobody/Anonymous (nobody) Summary: Bug in simplify_sum Initial Comment: On p. 876 of the PDF version of the Maxima Manual, Ver. 5.22 on the Maxima website, it gives an example of simplify_sum. But when I follow the example, the simplification doesn't work, contrary to what is shown in the manual. Below is the result I get: (%i1) display2d:false; (%o1) false (%i2) load("simplify_sum"); (%o2) "C:/program1/maxima/share/maxima/5.22.1/share/contrib/solve_rec/simplify_s um.mac" (%i3) sum(binom(n+k,k)/2^k, k, 0, n) + sum(binom(2*n, 2*k), k, 0, n); (%o3) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i4) simplify_sum(%); (%o4) 'sum(binom(n+k,k)/2^k,k,0,n)+'sum(binom(2*n,2*k),k,0,n) (%i5) Below is the Maxima version I'm using: Maxima version: 5.22.1 Maxima build date: 11:48 8/13/2010 Host type: i686pcmingw32 Lisp implementation type: GNU Common Lisp (GCL) Lisp implementation version: GCL 2.6.8  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=3093408&group_id=4933 