You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(3) 
2
(1) 
3
(3) 
4

5
(1) 
6
(1) 
7

8
(2) 
9
(5) 
10
(2) 
11
(4) 
12
(7) 
13
(1) 
14

15

16
(5) 
17
(4) 
18
(3) 
19
(3) 
20
(2) 
21
(2) 
22

23
(1) 
24

25
(3) 
26
(6) 
27
(7) 
28
(3) 
29
(16) 
30
(4) 

From: SourceForge.net <noreply@so...>  20100420 21:57:04

Bugs item #2989983, was opened at 20100420 19:35 Message generated for change (Comment added) made by alex108 You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2989983&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: wrong integration answer Initial Comment: When using sage, and thus Maxima, for the integration of: Cos(T + w) / (1+e cos(T)^2 from 0 to 2*pi, sage (and thus maxima?) gives 0 as answer. There maple gives the answer: 2*pi*e*cos(w)/1e^2)^1.5 the correct commands in sage 4.3.5 are (don't know them in maxima): sage: e = var('e') sage: w = var('w') sage: T = var('T') sage: assume(1e^2>0) sage: integrate(cos(w+T)/(1+e*cos(T))^2, T, 0, 2*pi) 0  Comment By: Aleksas Domarkas (alex108) Date: 20100421 00:57 Message: Solving with maxima 5.21.0 : (%i1) S: 'integrate(cos(T+w)/(1+e*cos(T))^2, T, 0, 2*%pi)$ (%i2) first(%)$ (%i3) expand(%)$ (%i4) f:trigexpand(%)$ (%i5) F:integrate(f,T)$ "Is "e^21.0" positive or negative?"negative; Antiderivative F is discontinous at T=%pi. For example (%i6) wxplot2d([F], [T,0,2*%pi]),e=1/2,w=1$ plot2d: expression evaluates to nonnumeric value somewhere in plotting range. (%t6) << Graphics >> Then integral is equal (%i7) limit(F,T,%pi,minus)ev(F,T=0)+ev(F,T=2*%pi)limit(F,T,%pi,plus)$ (%i8) sol:ratsimp(%); (%o8) (2*%pi*e*sqrt(1e^2)*cos(w))/(e^42*e^2+1) This is same as Maple answer: (%i9) 2*pi*e*cos(w)/(1e^2)^1.5$  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2989983&group_id=4933 
From: SourceForge.net <noreply@so...>  20100420 16:35:21

Bugs item #2989983, was opened at 20100420 16:35 Message generated for change (Tracker Item Submitted) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2989983&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: wrong integration answer Initial Comment: When using sage, and thus Maxima, for the integration of: Cos(T + w) / (1+e cos(T)^2 from 0 to 2*pi, sage (and thus maxima?) gives 0 as answer. There maple gives the answer: 2*pi*e*cos(w)/1e^2)^1.5 the correct commands in sage 4.3.5 are (don't know them in maxima): sage: e = var('e') sage: w = var('w') sage: T = var('T') sage: assume(1e^2>0) sage: integrate(cos(w+T)/(1+e*cos(T))^2, T, 0, 2*pi) 0  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2989983&group_id=4933 