You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(12) 
_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 






1
(2) 
2
(7) 
3

4
(4) 
5

6

7
(5) 
8

9

10
(2) 
11
(1) 
12

13

14
(1) 
15
(2) 
16
(8) 
17
(8) 
18
(2) 
19
(7) 
20
(3) 
21
(1) 
22
(2) 
23
(9) 
24
(10) 
25
(4) 
26
(3) 
27

28
(7) 
29
(2) 
30
(4) 
31
(13) 






From: SourceForge.net <noreply@so...>  20100116 21:18:26

Bugs item #1168099, was opened at 20050322 06:04 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1168099&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Documentation Group: None >Status: Closed >Resolution: Wont Fix Priority: 5 Private: No Submitted By: Cliff Yapp (starseeker) Assigned to: Nobody/Anonymous (nobody) Summary: Need to detail the available "maximaized" lisp functions Initial Comment: There exist many functions in Maxima that are expressions of basic programming tools in lisp, but tweaked to conveniently handle Maxima level interactions. These should be identified and documented. Example mfboundp is a version of fboundp in lisp which works on maxima functions.  >Comment By: Dieter Kaiser (crategus) Date: 20100116 22:18 Message: At this time we have a User manual which document the functions, variables and flags accessible by the Maxima user. There is no technical documentation which collects the Lisp functions. Maybe this bug report is a feature request to write a technical documentation too. At this time I think we can close this bug report as "wont fix". Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1168099&group_id=4933 
From: SourceForge.net <noreply@so...>  20100116 18:50:00

Bugs item #2933475, was opened at 20100116 19:47 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933475&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None >Status: Deleted >Resolution: Duplicate Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: sqrt(z^2) simplifies to %i*sqrt(z^2) for z complex Initial Comment: Maxima always simplifies sqrt(z^2) > %i*sqrt(z^2). This is not correct for z a complex value. (%i2) declare(z,complex)$ (%i3) sqrt(z^2); (%o3) %i*sqrt(z^2) We get the wrong sign for e.g. %i: (%i4) %,z=%i; (%o4) 1 This is the correct result: (%i5) sqrt(%i^2); (%o5) 1 Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20100116 19:50 Message: This is a duplicate of bug report 2933440. Deleting this bug report. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933475&group_id=4933 
From: SourceForge.net <noreply@so...>  20100116 18:47:01

Bugs item #2933475, was opened at 20100116 19:47 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933475&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: sqrt(z^2) simplifies to %i*sqrt(z^2) for z complex Initial Comment: Maxima always simplifies sqrt(z^2) > %i*sqrt(z^2). This is not correct for z a complex value. (%i2) declare(z,complex)$ (%i3) sqrt(z^2); (%o3) %i*sqrt(z^2) We get the wrong sign for e.g. %i: (%i4) %,z=%i; (%o4) 1 This is the correct result: (%i5) sqrt(%i^2); (%o5) 1 Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933475&group_id=4933 
From: SourceForge.net <noreply@so...>  20100116 16:52:14

Bugs item #2933440, was opened at 20100116 17:52 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933440&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: sqrt(z^2) simplifies to %i*sqrt(z^2) for z complex Initial Comment: Maxima always simplifies sqrt(z^2) > %i*sqrt(z^2). This is not correct for z a complex value. (%i2) declare(z,complex)$ (%i3) sqrt(z^2); (%o3) %i*sqrt(z^2) We get the wrong sign for e.g. %i: (%i4) %,z=%i; (%o4) 1 This is the correct result: (%i5) sqrt(%i^2); (%o5) 1 Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933440&group_id=4933 
From: SourceForge.net <noreply@so...>  20100116 15:38:56

Bugs item #2932096, was opened at 20100114 10:10 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2932096&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Floating point Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Raymond Toy (rtoy) Assigned to: Nobody/Anonymous (nobody) Summary: allroots fails for real polynomial Initial Comment: The real algorithm used in allroots fails: allroots(x^624576*x^5+402653184*x^44947802415966*x^3+40532397764222976*x^2+9157742690304*x+2069067169); No roots are found. If we force allroots to use the complex algorithm, the roots are found. If we multiply the polynomial by %i, causing allroots to use the complex algorithm, the roots are found once again. But if we use the Fortran code from which allroots was derived, the 6 roots are easily found. There is some bug in the translation.  >Comment By: Raymond Toy (rtoy) Date: 20100116 10:38 Message: Fixed in cpoly.lisp, rev 1.25. The problem was the computation of the error bound. This has been replaced by the method used by complex algorithm.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2932096&group_id=4933 
From: SourceForge.net <noreply@so...>  20100116 14:30:35

Bugs item #2933063, was opened at 20100115 19:57 Message generated for change (Comment added) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933063&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: simple equations with sqrt(x^2....) cannot be solved Initial Comment: wxmaxima version 0.8.4, naxima 5.20.1 for Windows Xp (sp3) or 2000 (sp4) simple equations or quadratic or biquadratic with unknown x in sqrt(..) cannot be solved. example 1: sqrt(x^2+a^2)=x+2 example 2: sqrt(x^2+a^2)=3*x example 3: sqrt(x^2+(a/2)^2)=x+sqrt(x^2+a^2)  Comment By: Nobody/Anonymous (nobody) Date: 20100116 14:30 Message: 1. (%i1) eq1:sqrt(x^2+a^2)=x+2; (%o1) sqrt(x^2+a^2)=x+2 (%i2) %^2; (%o2) x^2+a^2=(x+2)^2 (%i3) solve(%,x); (%o3) [x=(a^24)/4] (%i4) ans1:%[1]; (%o4) x=(a^24)/4 2. assume a>0 (%i5) eq2:sqrt(x^2+a^2)=3*x; (%o5) sqrt(x^2+a^2)=3*x (%i6) %^2; (%o6) x^2+a^2=9*x^2 (%i7) solve(%,x); (%o7) [x=a/2^(3/2),x=a/2^(3/2)] (%i8) ans2:%[2]; (%o8) x=a/2^(3/2) (%i9) float(%), numer; (%o9) x=0.35355339059327*a 3. assume a>0 (%i10) eq3:sqrt(x^2+(a/2)^2)=x+sqrt(x^2+a^2); (%o10) sqrt(x^2+a^2/4)=sqrt(x^2+a^2)+x (%i11) wxplot2d([lhs(eq3),rhs(eq3)], [x,5,5]),a=1$ (%t11) << Graphics >> (%i12) eq3^2,expand; (%o12) x^2+a^2/4=2*x*sqrt(x^2+a^2)+2*x^2+a^2 (%i13) %(2*x^2+a^2); (%o13) x^2(3*a^2)/4=2*x*sqrt(x^2+a^2) (%i14) %^2,expand; (%o14) x^4+(3*a^2*x^2)/2+(9*a^4)/16=4*x^4+4*a^2*x^2 (%i15) solve(%,x); (%o15) [x=(sqrt(2*sqrt(13)5)*a)/(2*sqrt(3)),x=(sqrt(2*sqrt(13)5)*a)/(2*sqrt(3)),x=(sqrt(2*sqrt(13)+5)*%i*a)/(2*sqrt(3)),x=(sqrt(2*sqrt(13)+5)*%i*a)/(2*sqrt(3))] (%i16) ans3:%[1]; (%o16) x=(sqrt(2*sqrt(13)5)*a)/(2*sqrt(3)) (%i17) float(%), numer; (%o17) x=0.4292534751294*a  Comment By: Barton Willis (willisbl) Date: 20100116 13:51 Message: Workaround: (%i2) load(to_poly_solver)$ (%i3) %solve(sqrt(x^2+a^2)=x+2,x); (%o3) %union([x=(a^24)/4])  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933063&group_id=4933 
From: SourceForge.net <noreply@so...>  20100116 13:51:24

Bugs item #2933063, was opened at 20100115 13:57 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933063&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: simple equations with sqrt(x^2....) cannot be solved Initial Comment: wxmaxima version 0.8.4, naxima 5.20.1 for Windows Xp (sp3) or 2000 (sp4) simple equations or quadratic or biquadratic with unknown x in sqrt(..) cannot be solved. example 1: sqrt(x^2+a^2)=x+2 example 2: sqrt(x^2+a^2)=3*x example 3: sqrt(x^2+(a/2)^2)=x+sqrt(x^2+a^2)  >Comment By: Barton Willis (willisbl) Date: 20100116 07:51 Message: Workaround: (%i2) load(to_poly_solver)$ (%i3) %solve(sqrt(x^2+a^2)=x+2,x); (%o3) %union([x=(a^24)/4])  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2933063&group_id=4933 
From: SourceForge.net <noreply@so...>  20100116 02:20:21

Bugs item #2924623, was opened at 20100101 19:36 Message generated for change (Comment added) made by sfrobot You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2924623&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed Resolution: Invalid Priority: 5 Private: Yes Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: eigen ? Initial Comment: problem when asking for computing eigenvalues. The corresponding funtion works perfectly well on windows OS  >Comment By: SourceForge Robot (sfrobot) Date: 20100116 02:20 Message: This Tracker item was closed automatically by the system. It was previously set to a Pending status, and the original submitter did not respond within 14 days (the time period specified by the administrator of this Tracker).  Comment By: Dieter Kaiser (crategus) Date: 20100102 01:49 Message: For the attached example I get eigenvalues and eigenvectors. I have not tried to verify the results. What do you expect? What is the problem? Setting the status to pending and the resolution to invalid. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2924623&group_id=4933 