You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(19) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(2) 
2
(1) 
3
(5) 
4
(4) 
5
(2) 
6
(5) 
7
(2) 
8

9

10
(12) 
11

12
(3) 
13
(5) 
14

15
(4) 
16
(3) 
17

18
(1) 
19
(7) 
20

21
(3) 
22
(4) 
23
(2) 
24
(2) 
25
(2) 
26
(6) 
27
(2) 
28
(2) 
29
(4) 
30
(2) 



From: SourceForge.net <noreply@so...>  20090903 16:45:49

Bugs item #2847387, was opened at 20090830 14:53 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2847387&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: hgfred([3/2,b],[5/2],1) bogus Initial Comment: The general result for the definite integral integrate(sqrt(t)*(t+1)^b,t,0,1) is 2/3*hypergeometric([3/2,b],[5/2],1). The new hypergeometric code gives correct answers for b a positive integer: (%i128) 2/3*hypergeometric([3/2,1],[5/2],1); (%o128) 16/15 (%i129) 2/3*hypergeometric([3/2,2],[5/2],1); (%o129) 184/105 (%i130) 2/3*hypergeometric([3/2,3],[5/2],1); (%o130) 928/315 For negative integers I have tried hgfred. This is an example for b=3: (%i112) 2/3*hgfred([3/2,3],[5/2],1); (%o112) (12*((1/(2*(1("*"()))^3*(1))+5/(8*(1("*"()))^2*(1)^2) 15/(16*(1("*"()))*(1)^3) +15*atanh(sqrt(1))/(16*(1)^(7/2)) 3/(1("*"()))^4) *sqrt(1("*"())) 2*(1/(4*(1("*"()))^2*(1))+3/(8*(1("*"()))*(1)^2) 3*atanh(sqrt(1))/(8*(1)^(5/2)) 1/(1("*"()))^3) /sqrt(1("*"())) 3*(1/(4*(1("*"()))*(1))+atanh(sqrt(1))/(4*(2*sqrt(1))) 1/(2*(1("*"()))^2)) /(2*(2*sqrt(1("*"())))) 3*(atanh(sqrt(1))/(2*sqrt(1))1/(2*(1("*"())))) /(2*(1("*"()))^(5/2)) 15*(1atanh(sqrt(1))*sqrt(1))/(16*(1("*"()))^(7/2))) *(2*sqrt(1("*"())))*(1)^2 36*((1/(4*(1("*"()))^2*(1))+3/(8*(1("*"()))*(1)^2) 3*atanh(sqrt(1))/(8*(1)^(5/2)) 1/(1("*"()))^3) *sqrt(1("*"())) 3*(1/(4*(1("*"()))*(1))+atanh(sqrt(1))/(4*(2*sqrt(1))) 1/(2*(1("*"()))^2)) /(2*sqrt(1("*"()))) 3*(atanh(sqrt(1))/(2*sqrt(1))1/(2*(1("*"())))) /(4*(2*sqrt(1("*"())))) 3*(1atanh(sqrt(1))*sqrt(1))/(8*(1("*"()))^(5/2))) *sqrt(1("*"()))*(1)^2 +9*((1/(4*(1("*"()))*(1))+atanh(sqrt(1))/(4*(2*sqrt(1))) 1/(2*(1("*"()))^2)) *sqrt(1("*"())) (atanh(sqrt(1))/(2*sqrt(1))1/(2*(1("*"())))) /sqrt(1("*"())) (1atanh(sqrt(1))*sqrt(1))/(4*(2*sqrt(1("*"())))))*(1)^2 /sqrt(1("*"())) 48*((1/(4*(1("*"()))^2*(1))+3/(8*(1("*"()))*(1)^2) 3*atanh(sqrt(1))/(8*(1)^(5/2)) 1/(1("*"()))^3) *sqrt(1("*"())) 3*(1/(4*(1("*"()))*(1))+atanh(sqrt(1))/(4*(2*sqrt(1))) 1/(2*(1("*"()))^2)) /(2*sqrt(1("*"()))) 3*(atanh(sqrt(1))/(2*sqrt(1))1/(2*(1("*"())))) /(4*(2*sqrt(1("*"())))) 3*(1atanh(sqrt(1))*sqrt(1))/(8*(1("*"()))^(5/2))) *(2*sqrt(1("*"())))*1 +72*((1/(4*(1("*"()))*(1))+atanh(sqrt(1))/(4*(2*sqrt(1))) 1/(2*(1("*"()))^2)) *sqrt(1("*"())) (atanh(sqrt(1))/(2*sqrt(1))1/(2*(1("*"())))) /sqrt(1("*"())) (1atanh(sqrt(1))*sqrt(1))/(4*(2*sqrt(1("*"()))))) *sqrt(1("*"()))*1 +24*((1/(4*(1("*"()))*(1))+atanh(sqrt(1))/(4*(2*sqrt(1))) 1/(2*(1("*"()))^2)) *sqrt(1("*"())) (atanh(sqrt(1))/(2*sqrt(1))1/(2*(1("*"())))) /sqrt(1("*"())) (1atanh(sqrt(1))*sqrt(1))/(4*(2*sqrt(1("*"()))))) *(2*sqrt(1("*"())))) /3 The answer is not simplified and contains bad subexpressions. But if we do an extra expand we get the correct solution: (%i113) expand(%); (%o113) %pi/16 We have the same problem with other negative integers for b too. For a positive integer we get an answer in terms of the jacobi_p function which does not simplify to a rational number. There is a problem with b=2: (%i124) 2/3*hgfred([3/2,2],[5/2],1); (%o124) 16*jacobi_p(2,3/2,2*false5/2,3)/105 The answer contains the boolean value false. Dieter Kaiser  >Comment By: Raymond Toy (rtoy) Date: 20090903 12:45 Message: I think the fundamental issue is that hgfred is meant for symbolic work with symbolic argument. Now, for the first problem, hgfred([3/2,2],[5/2],1) does something bad probably from the call to subst at the end of hypatanh. Perhaps it should use $subst. The second problem with jacobi_p is another example of where maxima is assuming the argument is symbolic, not numeric. Since people use hgfred all the time with numeric argument, perhaps hgfred should either warn/error about that, or it should replace the argument with a gensym, do the simplification, and then subst/limit the result with the numeric argument.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2847387&group_id=4933 
From: SourceForge.net <noreply@so...>  20090903 16:02:36

Bugs item #2850079, was opened at 20090903 18:02 Message generated for change (Tracker Item Submitted) made by hlitzroth You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2850079&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Xmaxima or other UI Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Harry Litzroth (hlitzroth) Assigned to: Nobody/Anonymous (nobody) Summary: log(x), assume, integrate(1/x,x) in maxima. Initial Comment: This is only meant to send an illustrating HTMLfile for nr. 2849942.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2850079&group_id=4933 
From: SourceForge.net <noreply@so...>  20090903 15:57:45

Bugs item #2849942, was opened at 20090903 15:26 Message generated for change (Comment added) made by hlitzroth You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2849942&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Xmaxima or other UI Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Harry Litzroth (hlitzroth) Assigned to: Nobody/Anonymous (nobody) Summary: log(x) with assume(x<0) and similar problems Initial Comment: The problem I think boils down to the fact, that integrates 1/x as log(x), even if x < 0. The attached file gives more instructions suffering from this problem.  >Comment By: Harry Litzroth (hlitzroth) Date: 20090903 17:57 Message: Integrating 1/x gives log x, instead of log x. If assume(x<0) Maxima nevertheless has no problem with plotting log(x) between [x^, 10^6, 10], and simply calls the assume inconistent. I will post ab htmlfile with more details.  Comment By: Raymond Toy (rtoy) Date: 20090903 15:37 Message: Can you please describe the problem here for those who do not use wxmaxima?  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2849942&group_id=4933 
From: SourceForge.net <noreply@so...>  20090903 13:37:17

Bugs item #2849942, was opened at 20090903 09:26 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2849942&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Xmaxima or other UI Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Harry Litzroth (hlitzroth) Assigned to: Nobody/Anonymous (nobody) Summary: log(x) with assume(x<0) and similar problems Initial Comment: The problem I think boils down to the fact, that integrates 1/x as log(x), even if x < 0. The attached file gives more instructions suffering from this problem.  >Comment By: Raymond Toy (rtoy) Date: 20090903 09:37 Message: Can you please describe the problem here for those who do not use wxmaxima?  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2849942&group_id=4933 
From: SourceForge.net <noreply@so...>  20090903 13:26:43

Bugs item #2849942, was opened at 20090903 15:26 Message generated for change (Tracker Item Submitted) made by hlitzroth You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2849942&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Xmaxima or other UI Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Harry Litzroth (hlitzroth) Assigned to: Nobody/Anonymous (nobody) Summary: log(x) with assume(x<0) and similar problems Initial Comment: The problem I think boils down to the fact, that integrates 1/x as log(x), even if x < 0. The attached file gives more instructions suffering from this problem.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2849942&group_id=4933 