You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(42) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(2) 
2
(1) 
3
(5) 
4
(4) 
5
(2) 
6
(5) 
7
(2) 
8

9

10
(12) 
11

12
(3) 
13
(5) 
14

15
(4) 
16
(3) 
17

18
(1) 
19
(7) 
20

21
(3) 
22
(4) 
23
(2) 
24
(2) 
25
(2) 
26
(6) 
27
(2) 
28
(2) 
29
(4) 
30
(2) 



From: SourceForge.net <noreply@so...>  20090919 23:36:36

Bugs item #2862208, was opened at 20090919 17:34 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862208&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: specint(exp(s*t)*t^n*bessel_j(1,t),t) is wrong Initial Comment: We have the remark in the testfile rtest14.mac that the Laplace transform of t^n*bessel_j(1,t) does not work for a general power n. These are the results: (%i3) assume(s>0)$ (%i5) expr:specint(exp(s*t)*t^n*bessel_j(1,t),t); Is n+2 positive, negative, or zero? p; (%o5) assoc_legendre_p(n1,1,1/sqrt(1/s^2+1)) *gamma(n+2)*(1/s^2+1)^(n/21/2)*s^(n1) The above result is wrong. We insert specific values for n and get: (%i6) expr,n=2; (%o6) 0 (%i7) expr,n=3; (%o7) 0 (%i8) expr,n=4; (%o8) 0 But we get the correct results if we do directly the integration for the specific values: (%i10) specint(exp(s*t)*t^2*bessel_j(1,t),t); (%o10) 3/((1/s^2+1)^(5/2)*s^4) (%i11) specint(exp(s*t)*t^3*bessel_j(1,t),t); (%o11) 12*(1/(1/s^2+1)^(5/2)5/(4*(1/s^2+1)^(7/2)*s^2))/s^5 (%i12) specint(exp(s*t)*t^4*bessel_j(1,t),t); (%o12) 60*(1/(1/s^2+1)^(7/2)7/(4*(1/s^2+1)^(9/2)*s^2))/s^6 We have to different bugs which causes the problem: 1. In the routine lgf24 in hyp.lisp the first parameter of the Associated Legendre Polynom is wrongly calculated. We have (n (mul 1 (add a a m))) ; that is not 2*ac The correct calculation would be (n (sub (add a a) c)) ; calculate 2*ac 2. With the correction from above we get the correct expression with a wrong sign. The reason is that we have to calculate assoc_legendre_p(n,1,x) which gives a wrong sign. See the bug report Bug ID: 2862197 "assoc_legendre_p(n,1,x) wrong sign". Remark: The two test in rtesthyp.mac to test the algorithm of legf24 are wrong too. Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20090920 01:36 Message: Fixed in hyp.lisp revision 1.106. Now we get the expected results for Laplace transforms of t^n*bessel_j(v,t) with more general parameters n and v. Closing this bug report as fixed. Dieter Kaiser  Comment By: Dieter Kaiser (crategus) Date: 20090919 18:43 Message: I think the answer of example 73 in rtest14.mac is wrong too. We can check it when we insert specific values: (%i6) expr:factor(ratsimp(specint(exp(s*t)*t^u*bessel_j(v,t),t))); (%o6) (s^2+1)^(u/21/2)*assoc_legendre_p(u1,v,s/sqrt(s^2+1))*gamma(v+u+1) (%i7) expr,u=2,v=1; (%o7) 0 When we correct the code we get the expected result: (%i12) expr:factor(ratsimp(specint(exp(s*t)*t^u*bessel_j(v,t),t))); (%o12) (s^2+1)^(u/21/2)*assoc_legendre_p(u,v,s/sqrt(s^2+1))*gamma(v+u+1) (%i13) expr,u=2,v=1; (%o13) 3*s*sqrt(1s^2/(s^2+1))/(s^2+1)^2 Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862208&group_id=4933 
From: SourceForge.net <noreply@so...>  20090919 23:32:46

Bugs item #2862197, was opened at 20090919 17:15 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862197&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Polynomials Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: assoc_legendre_p(n,1,x) wrong sign Initial Comment: The sign of assoc_legendre_p(n,1,x) is wrong. We get: (%i32) assoc_legendre_p(1,1,x); (%o32) sqrt(1x^2)/2 (%i33) assoc_legendre_p(2,1,x); (%o33) x*sqrt(1x^2)/2 (%i36) factor(ratsimp(assoc_legendre_p(3,1,x))); (%o36) sqrt(1x^2)*(5*x^21)/8 (%i37) factor(ratsimp(assoc_legendre_p(4,1,x))); (%o37) x*sqrt(1x^2)*(7*x^23)/8 In all cases above we obtain the expected answer when we multiply the result of Maxima with 1. As a reference I have taken the results from wolfram alpha. This bug is related to the problem that specint(exp(s*t)*t^n*bessel_j(1,t),t) does not work for a general power n. Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20090920 01:32 Message: Fixed in orthopoly.lisp revision 1.16. Closing this bug report. Dieter Kaiser  Comment By: Dieter Kaiser (crategus) Date: 20090919 18:36 Message: I had a look into the code. We do the following transformation for a negative second parameter m: assoc_legendre_p(n,m,x) > factorial(n+m)/factorial(nm) * asscoc_legendre_p(n,m,x) That is the simplified formula A&S 8.2.5 for m an integer. Wolfram functions gives an additional factor (1)^m. I think wolfram function is correct. With this factor we would get the expected results for the Laplace transform of t^n*bessel_j(1,t) too. Furthermore we would get the correct result for the Laplace transform of t^u*bessel_j(v,z). The expected answer of example 73 in rtest14.mac is not correct. We can see it when we insert specific values in the result. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862197&group_id=4933 
From: SourceForge.net <noreply@so...>  20090919 16:43:43

Bugs item #2862208, was opened at 20090919 17:34 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862208&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: specint(exp(s*t)*t^n*bessel_j(1,t),t) is wrong Initial Comment: We have the remark in the testfile rtest14.mac that the Laplace transform of t^n*bessel_j(1,t) does not work for a general power n. These are the results: (%i3) assume(s>0)$ (%i5) expr:specint(exp(s*t)*t^n*bessel_j(1,t),t); Is n+2 positive, negative, or zero? p; (%o5) assoc_legendre_p(n1,1,1/sqrt(1/s^2+1)) *gamma(n+2)*(1/s^2+1)^(n/21/2)*s^(n1) The above result is wrong. We insert specific values for n and get: (%i6) expr,n=2; (%o6) 0 (%i7) expr,n=3; (%o7) 0 (%i8) expr,n=4; (%o8) 0 But we get the correct results if we do directly the integration for the specific values: (%i10) specint(exp(s*t)*t^2*bessel_j(1,t),t); (%o10) 3/((1/s^2+1)^(5/2)*s^4) (%i11) specint(exp(s*t)*t^3*bessel_j(1,t),t); (%o11) 12*(1/(1/s^2+1)^(5/2)5/(4*(1/s^2+1)^(7/2)*s^2))/s^5 (%i12) specint(exp(s*t)*t^4*bessel_j(1,t),t); (%o12) 60*(1/(1/s^2+1)^(7/2)7/(4*(1/s^2+1)^(9/2)*s^2))/s^6 We have to different bugs which causes the problem: 1. In the routine lgf24 in hyp.lisp the first parameter of the Associated Legendre Polynom is wrongly calculated. We have (n (mul 1 (add a a m))) ; that is not 2*ac The correct calculation would be (n (sub (add a a) c)) ; calculate 2*ac 2. With the correction from above we get the correct expression with a wrong sign. The reason is that we have to calculate assoc_legendre_p(n,1,x) which gives a wrong sign. See the bug report Bug ID: 2862197 "assoc_legendre_p(n,1,x) wrong sign". Remark: The two test in rtesthyp.mac to test the algorithm of legf24 are wrong too. Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20090919 18:43 Message: I think the answer of example 73 in rtest14.mac is wrong too. We can check it when we insert specific values: (%i6) expr:factor(ratsimp(specint(exp(s*t)*t^u*bessel_j(v,t),t))); (%o6) (s^2+1)^(u/21/2)*assoc_legendre_p(u1,v,s/sqrt(s^2+1))*gamma(v+u+1) (%i7) expr,u=2,v=1; (%o7) 0 When we correct the code we get the expected result: (%i12) expr:factor(ratsimp(specint(exp(s*t)*t^u*bessel_j(v,t),t))); (%o12) (s^2+1)^(u/21/2)*assoc_legendre_p(u,v,s/sqrt(s^2+1))*gamma(v+u+1) (%i13) expr,u=2,v=1; (%o13) 3*s*sqrt(1s^2/(s^2+1))/(s^2+1)^2 Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862208&group_id=4933 
From: SourceForge.net <noreply@so...>  20090919 16:36:32

Bugs item #2862197, was opened at 20090919 17:15 Message generated for change (Comment added) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862197&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Polynomials Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: assoc_legendre_p(n,1,x) wrong sign Initial Comment: The sign of assoc_legendre_p(n,1,x) is wrong. We get: (%i32) assoc_legendre_p(1,1,x); (%o32) sqrt(1x^2)/2 (%i33) assoc_legendre_p(2,1,x); (%o33) x*sqrt(1x^2)/2 (%i36) factor(ratsimp(assoc_legendre_p(3,1,x))); (%o36) sqrt(1x^2)*(5*x^21)/8 (%i37) factor(ratsimp(assoc_legendre_p(4,1,x))); (%o37) x*sqrt(1x^2)*(7*x^23)/8 In all cases above we obtain the expected answer when we multiply the result of Maxima with 1. As a reference I have taken the results from wolfram alpha. This bug is related to the problem that specint(exp(s*t)*t^n*bessel_j(1,t),t) does not work for a general power n. Dieter Kaiser  >Comment By: Dieter Kaiser (crategus) Date: 20090919 18:36 Message: I had a look into the code. We do the following transformation for a negative second parameter m: assoc_legendre_p(n,m,x) > factorial(n+m)/factorial(nm) * asscoc_legendre_p(n,m,x) That is the simplified formula A&S 8.2.5 for m an integer. Wolfram functions gives an additional factor (1)^m. I think wolfram function is correct. With this factor we would get the expected results for the Laplace transform of t^n*bessel_j(1,t) too. Furthermore we would get the correct result for the Laplace transform of t^u*bessel_j(v,z). The expected answer of example 73 in rtest14.mac is not correct. We can see it when we insert specific values in the result. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862197&group_id=4933 
From: SourceForge.net <noreply@so...>  20090919 15:34:43

Bugs item #2862208, was opened at 20090919 17:34 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862208&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: specint(exp(s*t)*t^n*bessel_j(1,t),t) is wrong Initial Comment: We have the remark in the testfile rtest14.mac that the Laplace transform of t^n*bessel_j(1,t) does not work for a general power n. These are the results: (%i3) assume(s>0)$ (%i5) expr:specint(exp(s*t)*t^n*bessel_j(1,t),t); Is n+2 positive, negative, or zero? p; (%o5) assoc_legendre_p(n1,1,1/sqrt(1/s^2+1)) *gamma(n+2)*(1/s^2+1)^(n/21/2)*s^(n1) The above result is wrong. We insert specific values for n and get: (%i6) expr,n=2; (%o6) 0 (%i7) expr,n=3; (%o7) 0 (%i8) expr,n=4; (%o8) 0 But we get the correct results if we do directly the integration for the specific values: (%i10) specint(exp(s*t)*t^2*bessel_j(1,t),t); (%o10) 3/((1/s^2+1)^(5/2)*s^4) (%i11) specint(exp(s*t)*t^3*bessel_j(1,t),t); (%o11) 12*(1/(1/s^2+1)^(5/2)5/(4*(1/s^2+1)^(7/2)*s^2))/s^5 (%i12) specint(exp(s*t)*t^4*bessel_j(1,t),t); (%o12) 60*(1/(1/s^2+1)^(7/2)7/(4*(1/s^2+1)^(9/2)*s^2))/s^6 We have to different bugs which causes the problem: 1. In the routine lgf24 in hyp.lisp the first parameter of the Associated Legendre Polynom is wrongly calculated. We have (n (mul 1 (add a a m))) ; that is not 2*ac The correct calculation would be (n (sub (add a a) c)) ; calculate 2*ac 2. With the correction from above we get the correct expression with a wrong sign. The reason is that we have to calculate assoc_legendre_p(n,1,x) which gives a wrong sign. See the bug report Bug ID: 2862197 "assoc_legendre_p(n,1,x) wrong sign". Remark: The two test in rtesthyp.mac to test the algorithm of legf24 are wrong too. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862208&group_id=4933 
From: SourceForge.net <noreply@so...>  20090919 15:15:55

Bugs item #2862197, was opened at 20090919 17:15 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862197&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Polynomials Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: assoc_legendre_p(n,1,x) wrong sign Initial Comment: The sign of assoc_legendre_p(n,1,x) is wrong. We get: (%i32) assoc_legendre_p(1,1,x); (%o32) sqrt(1x^2)/2 (%i33) assoc_legendre_p(2,1,x); (%o33) x*sqrt(1x^2)/2 (%i36) factor(ratsimp(assoc_legendre_p(3,1,x))); (%o36) sqrt(1x^2)*(5*x^21)/8 (%i37) factor(ratsimp(assoc_legendre_p(4,1,x))); (%o37) x*sqrt(1x^2)*(7*x^23)/8 In all cases above we obtain the expected answer when we multiply the result of Maxima with 1. As a reference I have taken the results from wolfram alpha. This bug is related to the problem that specint(exp(s*t)*t^n*bessel_j(1,t),t) does not work for a general power n. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2862197&group_id=4933 
From: SourceForge.net <noreply@so...>  20090919 10:48:57

Bugs item #2857799, was opened at 20090912 19:04 Message generated for change (Settings changed) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2857799&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) >Assigned to: Barton Willis (willisbl) Summary: to_poly_solve gives too many solutions Initial Comment: Instead of as in Maxima 5.16.3, where we correctly get: to_poly_solve(Q*sqrt(Q^2+2)1,Q); [Q=1/sqrt(sqrt(2)+1), Q=1/sqrt((sqrt(2)+1)] in 5.19.1, we get the 1 versions, but: a:1/sqrt(sqrt(2)+1); b:bfloat(a); b*sqrt(b^2+2)1; 2.0b0 so presumably the negative ones are spurious.  >Comment By: Barton Willis (willisbl) Date: 20090919 05:48 Message: Fixed by to_poly_solver.mac revision 1.5; updated regression tests. (%o4) to_poly_solve(Q*sqrt(Q^2+2)1,Q); (%o4) %union([Q = 1/sqrt(1sqrt(2))],[Q = 1/sqrt(sqrt(2)+1)]) (%i5) build_info(); Maxima version: 5.19post Maxima build date: 19:13 9/18/2009 Host type: i686pcmingw32 Lisp implementation type: SBCL Lisp implementation version: 1.0.29  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2857799&group_id=4933 