You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(20) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2
(1) 
3

4

5

6
(5) 
7
(1) 
8
(1) 
9
(1) 
10
(2) 
11
(3) 
12
(10) 
13

14

15
(2) 
16
(1) 
17

18
(2) 
19
(8) 
20
(4) 
21
(4) 
22

23

24
(9) 
25
(2) 
26
(2) 
27

28
(3) 
29
(6) 
30
(6) 
31
(3) 





From: SourceForge.net <noreply@so...>  20090820 22:23:58

Bugs item #2841504, was opened at 20090821 00:23 Message generated for change (Tracker Item Submitted) made by crategus You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2841504&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: Limit of the factorial function  4 problems Initial Comment: 1. The limits from above and below for even negative integers are wrong: This is the correct limit for an odd integer from above. (%i4) limit(factorial(x),x,1,plus); (%o4) inf For an even negative integer the answer is minf, but again we get inf: (%i5) limit(factorial(x),x,2,plus); (%o5) inf The same problem for the limit from below: (%i8) limit(factorial(x),x,1,minus); (%o8) minf The sign of the infinity does not change: (%i9) limit(factorial(x),x,2,minus); (%o9) minf 2. Lisp error when the value is a symbol declared to be an integer. (%i10) declare(n,integer)$ (%i11) limit(factorial(x),x,n,plus); Maxima encountered a Lisp error: MINUSP: $N is not a real number Automatically continuing. To reenable the Lisp debugger set *debuggerhook* to nil. 3. No limit when the value is a floating point number representing a negative integer. (%i14) limit(factorial(x),x,1.0,plus); factorial: factorial of negative integer 1.0 not defined.  an error. To debug this try debugmode(true); But for a bigfloat numbers it works. (%i15) limit(factorial(x),x,1.0b0,plus); `rat' replaced 1.0B0 by 1/1 = 1.0B0 `rat' replaced 1.0B0 by 1/1 = 1.0B0 `rat' replaced 1.0B0 by 1/1 = 1.0B0 (%o15) inf 4. Arguments with infinities do not simplify correctly. (%i1) limit(factorial(x+inf),x,a); (%o1) (a + inf)! (%i2) limit(factorial(x+minf),x,a); (%o2) (a + minf)! (%i3) limit(factorial(x+infinity),x,a); (%o3) (a + infinity)! Fixes to the routine simplimfact are reported on the mailing list. Dieter Kaiser  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2841504&group_id=4933 
From: SourceForge.net <noreply@so...>  20090820 21:58:51

Bugs item #2841444, was opened at 20090820 23:58 Message generated for change (Tracker Item Submitted) made by suramon You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2841444&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Share Libraries Group: To be reviewed Status: Open Resolution: None Priority: 5 Private: No Submitted By: SuRaMoN (suramon) Assigned to: Nobody/Anonymous (nobody) Summary: simple_linear_regression fails with points on straight line Initial Comment: simple_linear_regression fails with points on a straight line: load(stats); simple_linear_regression([[1, 2], [3, 4], [5, 6]]); fails because of division by zero error. With points not on a straight line: simple_linear_regression([[1, 2.1], [3, 4.8], [5, 6.3]]); it works fine I'm using Maxima 5.19.0  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2841444&group_id=4933 
From: SourceForge.net <noreply@so...>  20090820 03:04:13

Bugs item #2838268, was opened at 20090815 20:27 Message generated for change (Comment added) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2838268&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Closed Resolution: Fixed Priority: 5 Private: No Submitted By: Tim McLarnan (tmclarnan) Assigned to: Nobody/Anonymous (nobody) Summary: integrate > too many contexts Initial Comment: (%i1) integrate(t*cos(t),t); (%o1) t sin(t) + cos(t) ; Correct (%i2) integrate(t*cos(1.0*t),t); context: too many contexts.  an error. To debug this try debugmode(true); (%i3) integrate(t^2,t); context: too many contexts.  an error. To debug this try debugmode(true); Notice that after encountering this bug, Maxima loses the ability to integrate anything at all. Maxima 5.18.1 http://maxima.sourceforge.net Using Lisp CMU Common Lisp 19f (19F) Host: Mac OS X 10.5.8, i686  Comment By: Nobody/Anonymous (nobody) Date: 20090820 03:04 Message: OK, cool. It works with the other trig functions. It's slightly odd that sin and cos behave a bit differently, though: Maxima 5.19post http://maxima.sourceforge.net Using Lisp CMU Common Lisp 19f (19F) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) integrate(t*1.0*cos(t),t); (%o1) 1.0 (t sin(t) + cos(t)) (%i2) integrate(t*sin(1.0*t),t); rat: replaced 1.0 by 1/1 = 1.0 rat: replaced 1.0 by 1/1 = 1.0 (%o2) sin(t)  t cos(t)  Comment By: Tim McLarnan (tmclarnan) Date: 20090818 20:22 Message: A blessing upon your house! Are there other trig functions that also need to be modified to prevent the same thing happening with slightly different integrals?  Comment By: Dan Gildea (dgildea) Date: 20090818 17:02 Message: Fixed in sin.lisp rev 1.51.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2838268&group_id=4933 
From: SourceForge.net <noreply@so...>  20090820 01:22:11

Bugs item #2761756, was opened at 20090414 07:56 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2761756&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Closed >Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: possible integration bug Initial Comment: I tried below. (%i2) declare(n,integer) ; (%o2) done (%i3) integrate(sin(n*%pi*x/a)*(sin(%pi*x/a))^3,x,a,a) ; (%o3) 0 Now, (sin(sin(%pi*x/a))^3 can be converted to (3*sin(%pi*x/a)sin(3*%pi*x/a))/4 and if I do above integration manually, it yields that the result is 0 for any n except 1 or 3. If n=1 result should be 3/4*a and if n=3 result should be a/4 but not zero for both cases. Is this a bug? Maxima version: 5.17.1 Maxima build date: 20:10 3/10/2009 host type: powerpcappledarwin8.11.0 lispimplementationtype: CMU Common Lisp lispimplementationversion: Stage 3 20071108T014921 (19D)  >Comment By: Raymond Toy (rtoy) Date: 20090819 21:22 Message: Reopening bug. Shouldn't maxima at least ask if n = 1 or something? When n = 1, the integrand is sin(%pi*x/a)^4, so the integral can't be zero.  Comment By: Dieter Kaiser (crategus) Date: 20090819 18:53 Message: When n is not declared to be an integer the answer is: (%i6) integrate(sin(n*%pi*x/a)*(sin(%pi*x/a))^3,x,a,a); (%o6) 12*a*sin(%pi*n)/(%pi*n^410*%pi*n^2+9*%pi) This answer simplifies correctly to zero when n is an integer. Closing this bug report as invalid. Dieter Kaiser  Comment By: Nobody/Anonymous (nobody) Date: 20090414 10:02 Message: Ok, it seems it an orthogonal problem. (%i7) integrate(sin(n*%pi*x)*sin(%pi*x),x,1,1) ; (%o7) 0  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2761756&group_id=4933 