You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1
(2) 
2
(12) 
3
(1) 
4
(4) 
5

6
(3) 
7

8
(1) 
9
(8) 
10
(4) 
11
(6) 
12
(1) 
13
(5) 
14
(3) 
15
(5) 
16
(3) 
17
(3) 
18
(2) 
19
(5) 
20
(4) 
21
(6) 
22
(1) 
23
(1) 
24
(6) 
25
(9) 
26
(1) 
27
(1) 
28
(8) 
From: SourceForge.net <noreply@so...>  20090224 23:20:43

Bugs item #816166, was opened at 20031001 18:24 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=816166&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Complex Group: None >Status: Closed >Resolution: Works For Me Priority: 5 Private: No Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: rectform/carg doesn't normalize exp(%i*n) (also asin, log) Initial Comment: carg(exp(%i*x)) => x (OK?) carg(exp(%i*10.0)) => 10.0 (No?) carg(exp(%i*%pi)) => %pi (OK) float(carg(exp(%i*%pi))) => 3.14 (OK) carg(exp(%i*float(%pi))) => 3.14 (?) float(carg(asin(%i*10))) => 1.57 (OK) carg(asin(%i*10)),numer => 4.71 (No!) float(rectform(log(%i*10))) => 2.30  1.57*%I (OK) rectform(log(%i*10)),numer => 2.30+4.71*%I (No!) Presumably the principal values is what is wanted. I will correct that. This is related to the fact that carg(exp(%i*x)) doesn't normalize x to (pi,pi] when x is not an explicit multiple of pi: carg(exp(%i*10)) => 10 carg(exp(%i*x)) => x but carg(exp(%i*(3*%pix))) => %pix How far should this go? I think it's pretty clear for the float/bfloat case, but how about carg(exp(%i*10))? Should that really return 104*%pi? Currently, it goes the other way around!: exp(%i*(104*%pi)) actually simplifies to exp(%i*10)....  >Comment By: Dan Gildea (dgildea) Date: 20090224 18:20 Message: In current cvs: (%i6) carg(exp(%i*x)); (%o6) x (%i7) carg(exp(%i*10.0)); (%o7) 2.566370614359173 (%i8) carg(exp(%i*%pi)); (%o8) %pi (%i9) float(carg(exp(%i*%pi))); (%o9) 3.141592653589793 (%i10) carg(exp(%i*float(%pi))); (%o10) 3.141592653589793 (%i11) float(carg(asin(%i*10))); (%o11) 1.570796326794897 (%i12) float(carg(asin(%i*10))); (%o12) 1.570796326794897 (%i13) float(rectform(log(%i*10))); (%o13) 2.3025850929940461.570796326794897*%i (%i14) rectform(log(%i*10)),numer; (%o14) log(10)%i*%pi/2 not sure why that last one didn't come out numerically: (%i18) log(%i*10),numer; (%o18) 2.3025850929940461.570796326794897*%i  Comment By: Barton Willis (willisbl) Date: 20050718 06:42 Message: Logged In: YES user_id=895922 How about 'nummod'? See my recent Maxima list posting and "Concrete Mathematics" by Graham, Knuth, and Patashnik, Section 3.4 (%i1) load("C:/maxima/nummod/nummod.lisp")$ (%i2) f(x) := %pi  nummod(%pix,2*%pi)$ (%i3) f(%pi); (%o3) %pi (%i4) f(0); (%o4) 0 (%i5) f(%pi); (%o5) %pi (%i6) f(%pi + 1/10^9); (%o6) 1/1000000000%pi (%i7) f(%pi  1/10^9); (%o7) %pi1/1000000000 (%i8) Barton  Comment By: Robert Dodier (robert_dodier) Date: 20050716 03:15 Message: Logged In: YES user_id=501686 Well, how about carg (exp (%i*10)) => 'mod (10, 2*%pi) ??  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=816166&group_id=4933 
From: SourceForge.net <noreply@so...>  20090224 23:15:39

Bugs item #940835, was opened at 20040423 12:08 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=940835&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Complex Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Stavros Macrakis (macrakis) >Assigned to: Dan Gildea (dgildea) Summary: rectform fails with float/numer flags Initial Comment: rectform(log(%i)) => %i*%pi/2 OK float(rectform(log(%i))) => 1.57 * %i OK rectform(log(%i)),numer => 4.71 * %i NO! rectform(log(%i)),float => fatal error The problem is the function 2pistrip.  >Comment By: Dan Gildea (dgildea) Date: 20090224 16:58 Message: Fixed in rpart.lisp rev 1.16 (%i4) rectform(log(%i)); (%o4) %i*%pi/2 (%i5) float(rectform(log(%i))); (%o5) 1.570796326794897*%i (%i6) rectform(log(%i)),numer; (%o6) 1.570796326794897*%i (%i7) rectform(log(%i)),float; (%o7) 0.5*%i*%pi  Comment By: Robert Dodier (robert_dodier) Date: 20060729 02:20 Message: Logged In: YES user_id=501686 In 5.9.3cvs: rectform(log(%i)),numer; =>  1.570796326794897 %i (OK) rectform(log(%i)),float; => 1.5 %i %pi (OOPS)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=940835&group_id=4933 
From: SourceForge.net <noreply@so...>  20090224 03:51:42

Bugs item #2617416, was opened at 20090219 13:58 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2617416&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Maxima can't solve equation Initial Comment: Can someone tell me if this is an equation that Maxima should solve? because it solves it in terms of l1 which is the variable I'm trying to solve it for. l1/sqrt(l1^2+22500)(500l1)/sqrt((500l1)^2+2500)  >Comment By: Barton Willis (willisbl) Date: 20090223 21:51 Message: Yes, it would be good if the solve function would handle this equation. For now, this is the best we havewe're always looking for volunteers that can help.  Comment By: Barton Willis (willisbl) Date: 20090223 21:51 Message: Yes, it would be good if the solve function would handle this equation. For now, this is the best we havewe're always looking for volunteers that can help.  Comment By: Nobody/Anonymous (nobody) Date: 20090221 21:11 Message: ok, but it seems a simple enough equation that Maxima should solve without having to use an optional package, right?  Comment By: Barton Willis (willisbl) Date: 20090219 21:21 Message: The optional package to_poly_solve solves this equation: (%i1) load("topoly_solver.mac")$ (%i2) to_poly_solve(l1/sqrt(l1^2+22500)(500l1)/sqrt((500l1)^2+2500),l1); (%o2) [[l1=375]]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2617416&group_id=4933 
From: SourceForge.net <noreply@so...>  20090224 03:51:20

Bugs item #2617416, was opened at 20090219 13:58 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2617416&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Maxima can't solve equation Initial Comment: Can someone tell me if this is an equation that Maxima should solve? because it solves it in terms of l1 which is the variable I'm trying to solve it for. l1/sqrt(l1^2+22500)(500l1)/sqrt((500l1)^2+2500)  >Comment By: Barton Willis (willisbl) Date: 20090223 21:51 Message: Yes, it would be good if the solve function would handle this equation. For now, this is the best we havewe're always looking for volunteers that can help.  Comment By: Nobody/Anonymous (nobody) Date: 20090221 21:11 Message: ok, but it seems a simple enough equation that Maxima should solve without having to use an optional package, right?  Comment By: Barton Willis (willisbl) Date: 20090219 21:21 Message: The optional package to_poly_solve solves this equation: (%i1) load("topoly_solver.mac")$ (%i2) to_poly_solve(l1/sqrt(l1^2+22500)(500l1)/sqrt((500l1)^2+2500),l1); (%o2) [[l1=375]]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2617416&group_id=4933 
From: SourceForge.net <noreply@so...>  20090224 03:48:55

Bugs item #2631766, was opened at 20090223 16:24 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2631766&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: abs((1+%i)^%i) is wrong Initial Comment: That is the complex number when we evaluate the expression numerically: (%i91) rectform((%i+1)^%i),numer; (%o91) .1548717524642468*%i+.4288290062943678 That is the correct absolute value of the complex number: (%i92) abs(%); (%o92) .4559381277659962 Now the wrong result: (%i93) abs((%i+1)^%i); (%o93) 1 That is the result when we use cabs: (%i94) cabs((%i+1)^%i); (%o94) sqrt(%e^(%pi/2)*sin(log(2)/2)^2+%e^(%pi/2)*cos(log(2)/2)^2) cabs evaluates to the correct numerical result: (%i95) cabs((%i+1)^%i),numer; (%o95) .4559381277659962 Remark: It does not help that cabs gets a correct result. The abs function should give a correct result or no result. I have not studied the bug systematically. I think we have wrong results whenever we have a complex exponent. Dieter Kaiser  >Comment By: Barton Willis (willisbl) Date: 20090223 21:48 Message: A fix might be to change cabs to $cabs in simpabs: (defmfun simpabs (x y z) (oneargcheck x) (setq y (simpcheck (cadr x) z)) (cond ((numberp y) (abs y)) ((or (arrayp y) ($member y $arrays)) `((mabs simp) ,y)) ((or (ratnump y) ($bfloatp y)) (list (car y) (abs (cadr y)) (caddr y))) ((taylorize 'mabs (second x))) ((member y '($inf $infinity $minf) :test #'eq) '$inf) ((member y '($ind $und) :test #'eq) y) ((eq (setq z (csign y)) t) ($cabs y)) < was (cabs y) ((member z '($pos $pz) :test #'eq) y)  Comment By: Barton Willis (willisbl) Date: 20090223 21:47 Message: A fix might be to change cabs to $cabs in simpabs: (defmfun simpabs (x y z) (oneargcheck x) (setq y (simpcheck (cadr x) z)) (cond ((numberp y) (abs y)) ((or (arrayp y) ($member y $arrays)) `((mabs simp) ,y)) ((or (ratnump y) ($bfloatp y)) (list (car y) (abs (cadr y)) (caddr y))) ((taylorize 'mabs (second x))) ((member y '($inf $infinity $minf) :test #'eq) '$inf) ((member y '($ind $und) :test #'eq) y) ((eq (setq z (csign y)) t) ($cabs y)) < was (cabs y) ((member z '($pos $pz) :test #'eq) y)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2631766&group_id=4933 
From: SourceForge.net <noreply@so...>  20090224 03:47:12

Bugs item #2631766, was opened at 20090223 16:24 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2631766&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: abs((1+%i)^%i) is wrong Initial Comment: That is the complex number when we evaluate the expression numerically: (%i91) rectform((%i+1)^%i),numer; (%o91) .1548717524642468*%i+.4288290062943678 That is the correct absolute value of the complex number: (%i92) abs(%); (%o92) .4559381277659962 Now the wrong result: (%i93) abs((%i+1)^%i); (%o93) 1 That is the result when we use cabs: (%i94) cabs((%i+1)^%i); (%o94) sqrt(%e^(%pi/2)*sin(log(2)/2)^2+%e^(%pi/2)*cos(log(2)/2)^2) cabs evaluates to the correct numerical result: (%i95) cabs((%i+1)^%i),numer; (%o95) .4559381277659962 Remark: It does not help that cabs gets a correct result. The abs function should give a correct result or no result. I have not studied the bug systematically. I think we have wrong results whenever we have a complex exponent. Dieter Kaiser  >Comment By: Barton Willis (willisbl) Date: 20090223 21:47 Message: A fix might be to change cabs to $cabs in simpabs: (defmfun simpabs (x y z) (oneargcheck x) (setq y (simpcheck (cadr x) z)) (cond ((numberp y) (abs y)) ((or (arrayp y) ($member y $arrays)) `((mabs simp) ,y)) ((or (ratnump y) ($bfloatp y)) (list (car y) (abs (cadr y)) (caddr y))) ((taylorize 'mabs (second x))) ((member y '($inf $infinity $minf) :test #'eq) '$inf) ((member y '($ind $und) :test #'eq) y) ((eq (setq z (csign y)) t) ($cabs y)) < was (cabs y) ((member z '($pos $pz) :test #'eq) y)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2631766&group_id=4933 