You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(31) 
_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1
(2) 
2
(12) 
3
(1) 
4
(4) 
5

6
(3) 
7

8
(1) 
9
(8) 
10
(4) 
11
(6) 
12
(1) 
13
(5) 
14
(3) 
15
(5) 
16
(3) 
17
(3) 
18
(2) 
19
(5) 
20
(4) 
21
(6) 
22
(1) 
23
(1) 
24
(6) 
25
(9) 
26
(1) 
27
(1) 
28
(8) 
From: SourceForge.net <noreply@so...>  20090219 19:58:40

Bugs item #2617416, was opened at 20090219 19:58 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2617416&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Maxima can't solve equation Initial Comment: Can someone tell me if this is an equation that Maxima should solve? because it solves it in terms of l1 which is the variable I'm trying to solve it for. l1/sqrt(l1^2+22500)(500l1)/sqrt((500l1)^2+2500)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2617416&group_id=4933 
From: SourceForge.net <noreply@so...>  20090219 14:12:13

Bugs item #2616384, was opened at 20090219 09:06 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2616384&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Tests Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: maxima tests unexpected failures Initial Comment: Maxima version: 5.13.0 Maxima build date: 22:40 9/5/2008 host type: powerpcunknownlinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.7 Error summary: Errors found in /usr/share/maxima/5.13.0/tests/rtest15.mac, problems: (43 50 56 62 68 74 80 86 154 163) real time : 380.730 secs rungbc time : 146.210 secs child run time : 0.050 secs gbc time : 26.860 secs (%o0) done  >Comment By: Raymond Toy (rtoy) Date: 20090219 09:12 Message: 5.13 is pretty old. Since tests sometimes get renumbered, can you show the actual test and results?  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2616384&group_id=4933 
From: SourceForge.net <noreply@so...>  20090219 14:06:49

Bugs item #2616384, was opened at 20090219 14:06 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2616384&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: maxima tests unexpected failures Initial Comment: Maxima version: 5.13.0 Maxima build date: 22:40 9/5/2008 host type: powerpcunknownlinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.7 Error summary: Errors found in /usr/share/maxima/5.13.0/tests/rtest15.mac, problems: (43 50 56 62 68 74 80 86 154 163) real time : 380.730 secs rungbc time : 146.210 secs child run time : 0.050 secs gbc time : 26.860 secs (%o0) done  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2616384&group_id=4933 
From: SourceForge.net <noreply@so...>  20090219 03:09:59

Bugs item #2184396, was opened at 20081021 13:05 Message generated for change (Comment added) made by boud1 You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2184396&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Satoshi Adachi (satoshi_adachi) Assigned to: Nobody/Anonymous (nobody) Summary: Wrong factorization of sqrt() Initial Comment: Dear Developers of Maxima, I found a wrong behavihor of sqrt(). It is a principle that sqrt(X*Y) should not be factorized to sqrt(X)*sqrt(Y) unless X and Y can be judged to be nonnegative. I found a case in which this principle is broken. Here is a program for demonstration:  /* * wrong_factorization_of_sqrt.maxima: * * S.Adachi 2008/10/01 */ display2d:false; /* real for 1 <= x <= 2 */ correct:sqrt((11/x)*(2/x1)); /* real for 2sqrt(2) <= x <= 2+sqrt(2) */ INCORRECT:sqrt((1(2sqrt(2))/x)*((2+sqrt(2))/x1)); INCORRECT_AT_2:at(INCORRECT,[x=2]); SHOULD_BE_POSITIVE:float(INCORRECT_AT_2); /* END */  The result of execution is as follows:  Maxima 5.14.0cvs http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) batch(wrong_factorization_of_sqrt.maxima) batching #p/Volumes/HFS+2/home/adachi/work/307/wrong_factorization_of_sqrt.maxima (%i2) display2d : false (%o2) false (%i3) correct:sqrt((11/x)*(2/x1)) (%o3) sqrt((11/x)*(2/x1)) (%i4) INCORRECT:sqrt((1(2sqrt(2))/x)*((sqrt(2)+2)/x1)) (%o4) sqrt((2sqrt(2))/x1)*sqrt(1(sqrt(2)+2)/x) (%i5) INCORRECT_AT_2:at(INCORRECT,[x = 2]) (%o5) sqrt((2sqrt(2))/21)*sqrt(1(sqrt(2)+2)/2) (%i6) SHOULD_BE_POSITIVE:float(INCORRECT_AT_2) (%o6) 0.70710678118655 (%o7) "wrong_factorization_of_sqrt.maxima"  At first, as is seen from (%i2) and (%o2), sqrt(11/x)*(2/x1)) is not factorized to sqrt(...)*sqrt(...) in any automatic way. This is the correct behavihor. Next, as is seen from (%i3) and (%o3), sqrt(1(2sqrt(2))/x)*((2+sqrt(2))/x1)) is factorized to sqrt((2sqrt(2))/x1)*sqrt(1(sqrt(2)+2)/x) in an automatic way. THIS IS AN INCORRECT BEHAVIOR. This expression is nonnegative for 2sqrt(2) <= x <= 2+sqrt(2). However, as is demonstrated by (%i4)(%o5), the calculated expression takes a negative value at x=2. Please stop the incorrect factorization of sqrt(X*Y) to sqrt(X)*sqrt(Y). Sincerely yours, Satoshi Adachi  Comment By: boud (boud1) Date: 20090219 02:31 Message: There's another bug related to this one IMHO: [ 2202764 ] Taylor series of sqrt(1+xy) http://sourceforge.net/tracker/index.php?func=detail&aid=2202764&group_id=4933&atid=104933 [This is why i came here  i had a Taylor series bug that i think is equivalent.] HACK SOLUTION: The bug is solved for me (maxima 5.10.0, debianetch) by setting radexpand : false; ANALYSIS: However, i'm not convinced that this is a sufficient response to the bug. i don't really know maxima well enough to know what would be most reasonable. (1) Set radexpand to false by default? And add more warnings in the documentation (or do we expect users to learn mathematics elsewhere than in software documentation?) (2) Tell maxima not to rewrite sqrt(X) as %i sqrt(X) when domain:real ? (3) Extend the "is X positive, negative or zero?" question to the cases where it still needs to be asked but so far does not get asked, i.e. when deciding whether sqrt(X*Y) = sqrt(X)*sqrt(Y) or sqrt(X*Y) =  sqrt(X)*sqrt(Y) ? (4) Decide not to invert the order of an expression inside sqrt( ... ) if domain:real, except when it's sure that the expression is positive?  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2184396&group_id=4933 
From: SourceForge.net <noreply@so...>  20090219 02:52:53

Bugs item #2202764, was opened at 20081028 03:36 Message generated for change (Comment added) made by boud1 You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2202764&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Taylor Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Taylor series of sqrt(1+xy) Initial Comment: Taylor expansion results of f:sqrt(1+xy) depends on sequence: (1) taylor(f,y,0,1); taylor(%,x,0,1) works properly: 1y/2+...+(1/2+y/4+...)*x+... (2) taylor(f,x,0,1); taylor(%,y,0,1) generates bad results: 1x/2+...+(1/2+x/4+...)*y+... The square of the "bad result" is 1+xy, but it is not the narrow definition of sqrt(), which should be positive in this case.  Comment By: boud (boud1) Date: 20090219 02:32 Message: This bug is IMHO related to [ 2184396 ] Wrong factorization of sqrt() Submitted By: Satoshi Adachi  satoshi_adachi Date Submitted: 20081021 13:05 http://sourceforge.net/tracker/index.php?func=detail&aid=2184396&group_id=4933&atid=104933 A hack solution is: radexpand : false; See 218439 for more discussion.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2202764&group_id=4933 