You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(19) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1
(2) 
2
(12) 
3
(1) 
4
(4) 
5

6
(3) 
7

8
(1) 
9
(8) 
10
(4) 
11
(6) 
12
(1) 
13
(5) 
14
(3) 
15
(5) 
16
(3) 
17
(3) 
18
(2) 
19
(5) 
20
(4) 
21
(6) 
22
(1) 
23
(1) 
24
(6) 
25
(9) 
26
(1) 
27
(1) 
28
(8) 
From: SourceForge.net <noreply@so...>  20090217 17:39:05

Bugs item #2609426, was opened at 20090217 10:32 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2609426&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Žiga Lenarčič (zigalenarcic) Assigned to: Nobody/Anonymous (nobody) Summary: integrate( cos(a)/ sqrt((tan(a))^2 + 1), a, %pi/2, %pi/2 ); Initial Comment: Maxima can't caluculate definite integral integrate( cos(a)/ sqrt((tan(a))^2 + 1), a, %pi/2, %pi/2 ); It gives me The number 1 isn't in the domain of atanh  an error. To debug this try debugmode(true); If I calculate indefinite integral integrate( cos(a)/ sqrt((tan(a))^2 + 1), a); and manually put in integration limits, it gives the correct result %pi/2.  >Comment By: Raymond Toy (rtoy) Date: 20090217 12:39 Message: FWIW, maxima is trying to find the roots of the denominator to see if there are any poles on the interval of integration. SOLVE is getting confused. A workaround would be to set intanalysis (undocumented) to false. Then integrate returns %pi/2.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2609426&group_id=4933 
From: SourceForge.net <noreply@so...>  20090217 15:32:03

Bugs item #2609426, was opened at 20090217 16:32 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2609426&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Žiga Lenarčič (zigalenarcic) Assigned to: Nobody/Anonymous (nobody) Summary: integrate( cos(a)/ sqrt((tan(a))^2 + 1), a, %pi/2, %pi/2 ); Initial Comment: Maxima can't caluculate definite integral integrate( cos(a)/ sqrt((tan(a))^2 + 1), a, %pi/2, %pi/2 ); It gives me The number 1 isn't in the domain of atanh  an error. To debug this try debugmode(true); If I calculate indefinite integral integrate( cos(a)/ sqrt((tan(a))^2 + 1), a); and manually put in integration limits, it gives the correct result %pi/2.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2609426&group_id=4933 
From: SourceForge.net <noreply@so...>  20090217 02:14:03

Bugs item #2607674, was opened at 20090216 19:49 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2607674&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 4 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: assume & dummy variables Initial Comment: Could be better, but not wrong: (%i1) integrate(abs(x)/(1 + abs(x)), x, 2 , 2); (%o1) integrate(abs(x)/(abs(x)+1),x,2,2) I think Maxima should ignore assumptions on dummy variables: (%i2) assume(x > 0, x < %pi); (%o2) [x>0,x<%pi] (%i3) integrate(abs(x)/(1 + abs(x)), x, 2 , 2); Is zeroa positive, negative, or zero?pos; I suppose abs(x) / (1 + abs(x)) > x / (1 + x); after that, integrate from 2 to 2. Ouch.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2607674&group_id=4933 