Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(39) 
_{Oct}
(30) 
_{Nov}
(75) 
_{Dec}
(28) 
2018 
_{Jan}
(70) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1
(2) 
2
(12) 
3
(1) 
4
(4) 
5

6
(3) 
7

8
(1) 
9
(8) 
10
(4) 
11
(6) 
12
(1) 
13
(5) 
14
(3) 
15
(5) 
16
(3) 
17
(3) 
18
(2) 
19
(5) 
20
(4) 
21
(6) 
22
(1) 
23
(1) 
24
(6) 
25
(9) 
26
(1) 
27
(1) 
28
(8) 
From: SourceForge.net <noreply@so...>  20090215 21:06:40

Bugs item #1981623, was opened at 20080601 23:39 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1981623&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Satoshi Adachi (satoshi_adachi) Assigned to: Nobody/Anonymous (nobody) Summary: wrong sign of sqrt() Initial Comment: Dear Developers of Maxima, I found that sqrt() returns the incorrect expression that has the sign opposite to the ture expression when some certain argument is given to sqrt(). Namely, sqrt() interprets incorrectly the database that is prepared by assume(). Here is an demonstration program:  /* * wrong_sign_of_sqrt.maxima * * S.Adachi 2008/06/01 */ display2d:false; assume(x >= 0, x <= 1); correct_result_1:sqrt((x1)^2); correct_result_2:sqrt(1/(x1)^2); correct_result_3:sqrt(a*(x1)^2); incorrect_result_1:sqrt(a/(x1)^2); incorrect_result_2:sqrt(a^2/(x1)^2); incorrect_result_3:sqrt(x^2/(x1)^2); /* END */  The result of execution is as follows:  Maxima 5.14.0cvs http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) batch(wrong_sign_of_sqrt.maxima) batching #p/Volumes/HFS+2/home/adachi/work/299/wrong_sign_of_sqrt.maxima (%i2) display2d : false (%o2) false (%i3) assume(x >= 0,x <= 1) (%o3) [x >= 0,x <= 1] (%i4) correct_result_1:sqrt((x1)^2) (%o4) 1x (%i5) correct_result_2:sqrt(1/(x1)^2) (%o5) 1/(1x) (%i6) correct_result_3:sqrt(a*(x1)^2) (%o6) sqrt(a)*(1x) (%i7) incorrect_result_1:sqrt(a/(x1)^2) (%o7) sqrt(a)/(x1) (%i8) incorrect_result_2:sqrt(a^2/(x1)^2) (%o8) abs(a)/(x1) (%i9) incorrect_result_3:sqrt(x^2/(x1)^2) (%o9) x/(x1) (%o10) "wrong_sign_of_sqrt.maxima"  I wonder why sqrt() returns the wrong expression if sqrt((x1)^2) appears in the denominator of some fraction in the argument that is more complex than some threshold (e.g. the numerator is not a simple number or something like that). I think that this is a very severe bug of sqrt() and the database that is prepared by assume(). This bug puts many user programs to the state producing many wrong results. Please fix this severe bug. Sincerely yours, Satoshi Adachi  >Comment By: Dan Gildea (dgildea) Date: 20090215 16:06 Message: Tracing dcompare shows that the results of comparisons with x change in the middle of the computation. (%i4) sqrt(a/(x1)^2); 0: (DCOMPARE $X 1) 0: DCOMPARE returned $NZ 0: (DCOMPARE $X 1.0) 0: DCOMPARE returned $PNZ 0: (DCOMPARE $X 0) 0: DCOMPARE returned $PZ 0: (DCOMPARE $X 1) 0: DCOMPARE returned $POS Similar behavior observed with bug 1419046 "sign bug".  Comment By: Raymond Toy (rtoy) Date: 20080730 14:15 Message: Logged In: YES user_id=28849 Originator: NO FWIW, the code that handles this is simpexpt in simp.lisp. For the case of sqrt((x1)^2), the e1 tag is done, and the second cond case is executed. The result is correct in this case. However, for sqrt(1/(x1)^2), the e1 tag is also done, but the first cond case is executed because the (noneg (cadr gr)) returns nonnil. In the former case the noneg call returns NIL, which is correct because x1 is not negative. I don't know why the two different calls to noneg return different values for x1. NIL should be returned in each case because x <= 1. There is one difference, though. The z arg to simpexpt is NIL for the case that works and T for the case that is incorrect.  Comment By: Robert Dodier (robert_dodier) Date: 20080623 10:26 Message: Logged In: YES user_id=501686 Originator: NO Assign category = lisp core / simplification.  Comment By: Satoshi Adachi (satoshi_adachi) Date: 20080611 02:50 Message: Logged In: YES user_id=1953419 Originator: YES Thank you for your suggestion. But, your suggestion just forbids Maxima to simplify certain expressions in order not to produce wrong results. Is someone trying to fix this bug now? If not yet, I will read lisp source code in some future (maybe, several months later) to try to fix the problem...  Comment By: Barton Willis (willisbl) Date: 20080604 07:20 Message: Logged In: YES user_id=895922 Originator: NO As a workaround, you might try setting radexpand to false: (%i1) assume(0 < x, x <= 1)$ (%i2) sqrt(a/(x1)^2); (%o2) sqrt(a)/(x1) (%i3) sqrt(a/(x1)^2), radexpand : false; (%o3) sqrt(a/(x1)^2)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1981623&group_id=4933 
From: SourceForge.net <noreply@so...>  20090215 20:59:56

Bugs item #1498047, was opened at 20060531 04:59 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1498047&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: limit(a/n,n,inf); Initial Comment: (%1) limit(a/n,n,inf); Is a positive, negative, or zero? In this case the question is not neccesery, because the result does not depend on "a". It is zero in every case. Yes, it is not an error, but strange.  Maxima version: 5.9.2 Maxima build date: 5:40 11/17/2005 host type: i486slackwarelinuxgnu lispimplementationtype: CLISP lispimplementationversion: 2.35 (20050829) (built on Gavathi.manchali.org [192.168.1.2])   >Comment By: Dan Gildea (dgildea) Date: 20090215 15:59 Message: As of limit rev 1.63 (%i2) limit(a/n, n, inf); (%o2) 0 (%i3) limit(a*n, n, inf); (%o3) infinity (%i4) limit(a*n, n, 0); (%o4) 0 All three commands above used to ask whether a is pos, neg, or zero. For limit(a*n, n, inf) the sign of a would determine whether result is inf or minf.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1498047&group_id=4933 
From: SourceForge.net <noreply@so...>  20090215 18:00:15

Bugs item #593351, was opened at 20020810 03:48 Message generated for change (Comment added) made by rswarbrick You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=593351&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: limit/sin(inf)etc. should give 0, not IND Initial Comment: limit(cos(1/x)*sin(x)sin(x),x,inf) should give 0, not IND.  Comment By: Rupert Swarbrick (rswarbrick) Date: 20090215 18:00 Message: This happens for limit ( (cos(1/x)1) * sin(x), x, inf) because $limit is somehow refactoring before it gets around to calling limit. Tracing shows: (LIMIT ((MPLUS SIMP) ((MTIMES SIMP) 1 ((%SIN SIMP) $X)) ((MTIMES SIMP) ((%COS SIMP) ((MEXPT SIMP) $X 1)) ((%SIN SIMP) $X))) $X $INF THINK) which then gets evaluated for each term in the plus, giving $ind  $ind = $ind. The following call works: (let ((lhp?)) (declare (special lhp?)) (limit #$(cos(1/x)1) * sin(x)$ '$X '$INF 'THINK)) giving '$zerob. I'm not sure if there's a canonical way to expand the right things in general though. Rupert  Comment By: Stavros Macrakis (macrakis) Date: 20020919 04:55 Message: Logged In: YES user_id=588346 Strangely enough, limit even gets this wrong if you feed it the factored form: limit ( (cos(1/x)1) * sin(x), x, inf) even though it correctly gets limit(cos(1/x)1,x,inf) => 0 and limit(sin(x),x,inf) => ind and 0*ind is always 0. On the other hand, it does get it right if you factor the exponentialized form: limit(factor(ev(...,exponentialize)),x,inf) => 0  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=593351&group_id=4933 
From: SourceForge.net <noreply@so...>  20090215 02:26:19

Bugs item #2600423, was opened at 20090214 12:42 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2600423&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Differential eqns Group: None Status: Closed Resolution: Fixed Priority: 5 Private: No Submitted By: Carl Krauthauser (carl1964) Assigned to: Barton Willis (willisbl) Summary: Running a loaded ODE package causes error Initial Comment: Using maxima5.17.11.centos4.i386.rpm on a Centos 4.7, i386 box. Doing the following sequence leads to the following result: (%i1) load(odelin); (%o1) /usr/share/maxima/5.17.1/share/contrib/diffequations/odelin.lisp (%i2) odelin(x2*'diff(y,x,2)+x*'diff(y,x)+(a2*x2b2)*y=0,y,x); Maxima encountered a Lisp error: EVAL: too many arguments given to SRATSIMP: (SRATSIMP P X) Automatically continuing. To reenable the Lisp debugger set *debuggerhook* to nil. The same result is obtained if I load the package contrib_ode.  >Comment By: Barton Willis (willisbl) Date: 20090214 20:26 Message: Fixed by odelin.lisp CVS revision 1.15. I was able to run the testodelin (requires a few anges in testodelin, not in the odelin.lisp code); odelin solves all 100 DEs. Thanks for the report.  Comment By: Barton Willis (willisbl) Date: 20090214 20:25 Message: Fixed by odelin.lisp CVS revision 1.15. I was able to run the testodelin (requires a few anges in testodelin, not in the odelin.lisp code); odelin solves all 100 DEs. Thanks for the report.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2600423&group_id=4933 
From: SourceForge.net <noreply@so...>  20090215 02:26:09

Bugs item #2600423, was opened at 20090214 12:42 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2600423&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Differential eqns Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Carl Krauthauser (carl1964) >Assigned to: Barton Willis (willisbl) Summary: Running a loaded ODE package causes error Initial Comment: Using maxima5.17.11.centos4.i386.rpm on a Centos 4.7, i386 box. Doing the following sequence leads to the following result: (%i1) load(odelin); (%o1) /usr/share/maxima/5.17.1/share/contrib/diffequations/odelin.lisp (%i2) odelin(x2*'diff(y,x,2)+x*'diff(y,x)+(a2*x2b2)*y=0,y,x); Maxima encountered a Lisp error: EVAL: too many arguments given to SRATSIMP: (SRATSIMP P X) Automatically continuing. To reenable the Lisp debugger set *debuggerhook* to nil. The same result is obtained if I load the package contrib_ode.  >Comment By: Barton Willis (willisbl) Date: 20090214 20:25 Message: Fixed by odelin.lisp CVS revision 1.15. I was able to run the testodelin (requires a few anges in testodelin, not in the odelin.lisp code); odelin solves all 100 DEs. Thanks for the report.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2600423&group_id=4933 