Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(39) 
_{Oct}
(30) 
_{Nov}
(75) 
_{Dec}
(28) 
2018 
_{Jan}
(70) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(4) 
2
(4) 
3
(10) 
4
(13) 
5
(1) 
6
(4) 
7
(2) 
8
(4) 
9
(1) 
10
(3) 
11
(1) 
12
(7) 
13
(6) 
14
(4) 
15
(7) 
16
(2) 
17
(5) 
18

19
(3) 
20

21
(2) 
22

23

24

25
(14) 
26

27
(4) 
28
(2) 
29

30

31

From: SourceForge.net <noreply@so...>  20090108 19:31:02

Bugs item #2494349, was opened at 20090108 14:14 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2494349&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Peter Mller (rafpeterm) Assigned to: Nobody/Anonymous (nobody) Summary: solve(e^y  y = 0, y) solves to y = e Initial Comment: Hi, I think the result for solve(e^y  y = 0, y) is wrong. maxima outputs y = e, instead of [], because the expression is simply wrong (e^y  y can never be null). What do you think about it?  >Comment By: Raymond Toy (rtoy) Date: 20090108 14:30 Message: First, did you mean to use %e instead of e? Second solve(e^yy=0,y) returns [y = e^y] for me, not [y = e]. The result isn't really wrong, just not very useful. solve is not very smart.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2494349&group_id=4933 
From: SourceForge.net <noreply@so...>  20090108 19:15:02

Bugs item #2494349, was opened at 20090108 20:14 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2494349&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Peter Mller (rafpeterm) Assigned to: Nobody/Anonymous (nobody) Summary: solve(e^y  y = 0, y) solves to y = e Initial Comment: Hi, I think the result for solve(e^y  y = 0, y) is wrong. maxima outputs y = e, instead of [], because the expression is simply wrong (e^y  y can never be null). What do you think about it?  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2494349&group_id=4933 
From: SourceForge.net <noreply@so...>  20090108 16:17:46

Bugs item #2494112, was opened at 20090108 17:17 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2494112&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Plotting Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Fabrizio Berloco (fabri_berloco) Assigned to: Nobody/Anonymous (nobody) Summary: Clotoid (Cornu's Spiral) is not plotted Initial Comment: I'm trying to plot a Cornu's Spiral that is given by a parametric plot of Fresnel Integrals, but I get a very wrong graph; I tried also plotting the same function on Mathematica and I got the right graph; this is maxima (wxMaxima 0.7.1 GNU Linux Debian) code: x(t)=integrate(cos(2*(t^2)/%pi),t)/sqrt(2/%pi); y(t)=integrate(sin(2*(t^2)/%pi),t)/sqrt(2/%pi); plot2d([parametric,x(t),y(t),[t,7,7]]); Mathematica (Linux Version) code is: ParametricPlot[{FresnelC[Sqrt[2/Pi]*t]/Sqrt[2/Pi], FresnelS[Sqrt[2/Pi]*t]/Sqrt[2/Pi]}, {t, 7, 7}] With this last I get the right spiral (see also: "http://wapedia.mobi/en/Image:Cornu_Spiral.svg";)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2494112&group_id=4933 
From: SourceForge.net <noreply@so...>  20090108 16:02:00

Bugs item #2490795, was opened at 20090106 21:33 Message generated for change (Settings changed) made by fabri_berloco You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2490795&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed Resolution: Works For Me Priority: 5 Private: No Submitted By: Fabrizio Berloco (fabri_berloco) Assigned to: Nobody/Anonymous (nobody) Summary: Maxima integrates trascendental functions: Fresnel Integrals Initial Comment: I'm using Maxima 5.16.3; this software seems to be able to integrate trascendental functions; I reazlized that while i was trying to plot clotoid (Cornu's Spiral) Example: integrate(cos(%pi*(t^2)/2),t); I get this function: ((%i1)*erf((sqrt(%pi)*(%i+1)*t)/2)+(%i+1)*erf((sqrt(%pi)*(%i1)*t)/2))/4  Comment By: Dieter Kaiser (crategus) Date: 20090106 23:34 Message: The result is obtained by the risch integrator. risch (expr, x) integrates expr with respect to x using the transcendental case of the Risch algorithm. This handles nested exponentials. Risch is called from integrate when integrate can not handle the integrand. Setting the flag erfflag to NIL risch do not use the Error function erf. In this case the integral remain unevaluated. The result is correct and represents the Fresnel C(t) function. It can be proved with the implemented fresenl_c(z) function (Maxima 5.17post): (%i27) erf_representation:true$ /* transformfresnel_c to erf representation */ (%i28) fresnel_c(t); (%o28) (1%i)*(erf(sqrt(%pi)*(%i+1)*t/2)+%i*erf(sqrt(%pi)*(1%i)*t/2))/4 (%i29) expand(risch(cos(%pi*(t^2)/2),t)fresnel_c(t)); (%o29) 0 There is no bug. All works well. Setting this bug report to pending. Dieter Kaiser  Comment By: Fabrizio Berloco (fabri_berloco) Date: 20090106 21:40 Message: The solution contains the error function(erf) that is trascendental, perhaps this is the solution. The version is Maxima 5.16.3 for Windows  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2490795&group_id=4933 