You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2

3

4
(4) 
5

6
(2) 
7
(2) 
8
(3) 
9
(1) 
10

11

12

13
(2) 
14

15
(1) 
16
(7) 
17
(1) 
18
(1) 
19

20

21

22

23

24
(1) 
25
(2) 
26
(5) 
27
(1) 
28
(1) 
29
(4) 
30
(6) 






From: SourceForge.net <noreply@so...>  20081126 22:32:02

Bugs item #1054472, was opened at 20041026 05:35 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1054472&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: defint(log(1+exp(A+B*cos(phi))),phi,0,%pi) wrong Initial Comment: Maxima 5.9.0 C1) assume(B>0,BA>0)$ (C2) integrate(log(1+exp(A+B*cos(phi))),phi,0,%pi);  B B A (D2) 3 %PI LOG(%E (%E + %E )) But if we give A and B numerical values (C3) B:3$ A:2$ ev(D2,numer); (C4) (C5) (D5) 2.952421848475173 (C6) B:3.2$ A:3$ ev(D2,numer); (C7) (C8) (D8) .0191075509605848 while by evaluating the integral numerically we obtain something different (C11) B:3$ A:2$ romberg(log(1+exp(A+B*cos(phi))),phi,0,%pi); (C12) (C13) (D13) 7.506856487627962 (C14) B:3.2$ A:3$ romberg(log(1+exp(A+B*cos(phi))),phi,0,%pi); (C15) (C16) (D16) 0.663669430006855 The integrand does not look like the kind of thing that would give the romberg procedure any trouble (C25) plot2d(log(1+exp(A+B*cos(phi))),[phi,0,%pi])$ In fact, by visual inspection of the plot it is clear that the area under the curve is much closer to 0.66 (romberg's result) than to 0.02 (as integrate would have us believe). The same problem occurs if we use defint instead of integrate. Cheers.  >Comment By: Dan Gildea (dgildea) Date: 20081126 17:32 Message: fixed in risch.lisp rev 1.16  now returns unevaluated.  Comment By: Robert Dodier (robert_dodier) Date: 20060731 01:00 Message: Logged In: YES user_id=501686 Observed in 5.9.3cvs. Not sure, but it looks like integrate yields a different result when A and B are symbols compared to when they are given specific values A=2, B=3.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1054472&group_id=4933 
From: SourceForge.net <noreply@so...>  20081126 22:30:37

Bugs item #929704, was opened at 20040405 08:10 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=929704&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: Fix for 5.9.0 >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: defint log(abs(...))/sqrt(...) gives wrong result Initial Comment: integrate((log(abs(diff(4*x*(1x),x))))/(%pi*sqrt(x*(1 x))),x,0,1); The resoult of computation is log(4); ,but it is not corect,the right resoult is log(2);  >Comment By: Dan Gildea (dgildea) Date: 20081126 17:30 Message: fixed in risch.lisp rev 1.16  now returns unevaluated.  Comment By: Raymond Toy (rtoy) Date: 20060902 09:17 Message: Logged In: YES user_id=28849 If you trace antideriv, you can see that it is computing the indefinite integral and returns the result: 2*atan(sqrt(1x)/sqrt(x))*log(abs(8*x4)) The derivative doesn't look anything like the integrand. But maxima thinks the indefinite integral doesn't exist. The function antideriv is doing something but I don't know what.  Comment By: Robert Dodier (robert_dodier) Date: 20060729 02:06 Message: Logged In: YES user_id=501686 Observed in 5.9.3cvs.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=929704&group_id=4933 
From: SourceForge.net <noreply@so...>  20081126 15:16:57

Bugs item #2180110, was opened at 20081019 12:11 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2180110&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Dieter Kaiser (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: GCL do not signal an overflow converting bigfloat to float Initial Comment: With GCL we do not get overflow errors when converting bigfloat numbers into float numbers which are obviously too big to fit in a float number: This is a correct example: (%i11) float(gamma(150b0)); (%o11) 3.8089226376305632E+260 The following bigfloat numbers are too big. The result is unpredicable and wrong: (%i12) float(gamma(250b0)); (%o12) 4.0014303970800103E127 (%i13) float(gamma(2500b0)); (%o13) 5.0208574388889818E+9 I have observed this for GCL 2.6.8. CLISP 2.44 gives an overflow error. The problem is the Lisp function scalefloat which is called by fp2flo in the file float.lisp. Dieter Kaiser  Comment By: Raymond Toy (rtoy) Date: 20081126 10:16 Message: Here is a replacement. It explicitly checks for overflow and signals it. An overflow happens if the exponent is larger than 1024, the largest doublefloat exponent. (defmfun fp2flo (l) (let ((precision (caddar l)) (mantissa (cadr l)) (exponent (caddr l)) (fpprec machinemantissaprecision) (*m 0)) (setq mantissa (quotient (fpround mantissa) (expt 2.0 machinemantissaprecision))) (let ((e (+ exponent ( precision) *m machinemantissaprecision))) (if (>= (abs e) 1025) (merror "Floating point overflow in converting ~:M to flonum" l) (scalefloat mantissa e)))))  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2180110&group_id=4933 
From: SourceForge.net <noreply@so...>  20081126 14:19:25

Bugs item #2349973, was opened at 20081126 04:51 Message generated for change (Comment added) made by rtoy You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2349973&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: radcan gives incorrect result. Initial Comment:  Maxima version: 5.16.3 Maxima build date: 23:54 11/19/2008 host type: x86_64pclinuxgnu lispimplementationtype: SBCL lispimplementationversion: 1.0.19gentoo  The expression before radcan is not eqvivalent to the expression after. Steps to reproduce: (I'm trying to plot the amplitude characteristic of a signal sin(500pi*t) 0<t<1/5 , 0 otherwise, by using the absolute value of the laplace transform on the im axis). (%i54) s1: integrate(sin(400*%pi*t)*exp(s*t), t, 0, 1/5); (%o54) (400*%pi)/(s^2+160000*%pi^2)(400*%pi*%e^(s/5))/(s^2+160000*%pi^2) (%i55) plot2d([radcan(trigreduce(ratsimp(abs(ev(s1,s=%i*w)))))], [w,2000,2000], [plot_format, gnuplot])$ Warning: empty y range [0:0], adjusting to [1:1] (%i56) plot2d([trigreduce(ratsimp(abs(ev(s1,s=%i*w))))], [w,2000,2000], [plot_format, gnuplot])$ contact at: lereg at zero hyphen kelvin dot org  >Comment By: Raymond Toy (rtoy) Date: 20081126 09:19 Message: Read the documentation on radcan and radexpand. In particular, radcan will convert sqrt(x^22*x+1) to x  1, and sqrt(1x) to %i*sqrt(x1). This is what is happening to the second plot. It might be a bug that plot2d doesn't plot anything, though.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2349973&group_id=4933 
From: SourceForge.net <noreply@so...>  20081126 09:51:23

Bugs item #2349973, was opened at 20081126 09:51 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2349973&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: radcan gives incorrect result. Initial Comment:  Maxima version: 5.16.3 Maxima build date: 23:54 11/19/2008 host type: x86_64pclinuxgnu lispimplementationtype: SBCL lispimplementationversion: 1.0.19gentoo  The expression before radcan is not eqvivalent to the expression after. Steps to reproduce: (I'm trying to plot the amplitude characteristic of a signal sin(500pi*t) 0<t<1/5 , 0 otherwise, by using the absolute value of the laplace transform on the im axis). (%i54) s1: integrate(sin(400*%pi*t)*exp(s*t), t, 0, 1/5); (%o54) (400*%pi)/(s^2+160000*%pi^2)(400*%pi*%e^(s/5))/(s^2+160000*%pi^2) (%i55) plot2d([radcan(trigreduce(ratsimp(abs(ev(s1,s=%i*w)))))], [w,2000,2000], [plot_format, gnuplot])$ Warning: empty y range [0:0], adjusting to [1:1] (%i56) plot2d([trigreduce(ratsimp(abs(ev(s1,s=%i*w))))], [w,2000,2000], [plot_format, gnuplot])$ contact at: lereg at zero hyphen kelvin dot org  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2349973&group_id=4933 