You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(30) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 




1
(3) 
2
(2) 
3
(1) 
4

5
(1) 
6
(4) 
7
(1) 
8
(4) 
9
(3) 
10
(7) 
11
(1) 
12
(2) 
13

14
(4) 
15

16
(2) 
17

18
(5) 
19
(3) 
20

21
(3) 
22

23
(1) 
24

25

26
(1) 
27

28
(1) 
29
(2) 
30
(4) 
31


From: SourceForge.net <noreply@so...>  20081014 21:19:36

Bugs item #2158174, was opened at 20081010 17:10 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2158174&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: The Henman (rvh2007) >Assigned to: Dan Gildea (dgildea) Summary: Bug in Limit of a function Initial Comment: Try (%i1) kill(all); (eq0) done (%i1) assume_pos:true; (eq1) true (%i2) (declare(n,integer),assume(sigma>0,equal(n1, 0))); (eq2) [sigma>0,equal(n,1)] (%i3) f(x):=(sqrt(2)/(2*sqrt(%pi)*sqrt(sigma)))*exp((x^2/(2*sigma))); (eq3) f(x):=sqrt(2)/(2*sqrt(%pi)*sqrt(sigma))*exp(x^2/(2*sigma)) (%i4) integrate(f(x),x,minf,inf); (eq4) 1 (%i5) integrate(x^2*f(x), x, minf, inf)(integrate(x*f(x), x, minf, inf))^2; (eq5) sigma (%i6) integrate(x*f(a*xb^2),x,minf,inf); (eq6) b^2/a^2 (%i7) limit(integrate((a*x^3+b*x^2+c*x+d)*f(x^n), x, minf, inf), sigma,0); (eq7) 0 (%i8) limit(integrate((a*x^3+b*x^2+c*x+d)*f(x), x, minf, inf), sigma,0); (eq8) d Output 7 is 0 and output 8 is d. They can't both be right since input 2 declares n=1, so they are equivilent. Rich Hennessy Maxima version: 5.16.3 Maxima build date: 22:48 8/24/2008 host type: i686pcmingw32 lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.8  >Comment By: Dan Gildea (dgildea) Date: 20081014 17:19 Message: Duplicate of [ 707253 ] limit(x^y,x,0) (y=0) => 0. Fixed in simp.lisp 1.58 and limit.lisp 1.56.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2158174&group_id=4933 
From: SourceForge.net <noreply@so...>  20081014 21:17:56

Bugs item #707253, was opened at 20030320 19:48 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=707253&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Limit Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Stavros Macrakis (macrakis) >Assigned to: Dan Gildea (dgildea) Summary: limit(x^y,x,0) (y=0) => 0 Initial Comment: limit(x^y,x,0) Is y pnz? zero => 0 This should be 1! Why? Because the question is asking about a property of y which is independent of x. That is, we fix y=0 and THEN take the limit. With y=0, x^y=1 for all nonzero x, and so limit(x^y,x,0)=1. Tlimit also gets this wrong.  >Comment By: Dan Gildea (dgildea) Date: 20081014 17:17 Message: Fixed in simp.lisp 1.58 and limit.lisp 1.56.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=707253&group_id=4933 
From: SourceForge.net <noreply@so...>  20081014 14:14:35

Bugs item #2166223, was opened at 20081014 14:14 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2166223&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: is(ind<1) gives error Initial Comment: is(ind<1) gives an error: The sign of ind is undefined  an error. To debug this try debugmode(true); It should give <unknown>. Maxima 5.15.0 http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (aka GCL)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2166223&group_id=4933 
From: SourceForge.net <noreply@so...>  20081014 10:42:31

Bugs item #2042069, was opened at 20080807 19:33 Message generated for change (Comment added) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2042069&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: solve solves in terms of the solve variable Initial Comment: I entered the following function definitions: N(a,b,g):=sqrt((g+a+sqrt((ga)^2+b^2))/2); n(a,b,g,mr,mi):=sqrt((mr^2+mi^2)N(a,b,g)^2mi(mr bmi a))/mr; and tried to solve the equation in terms of g: solve(n(a,b,g,mr,mi)^2=g,g); the result was [g=(a*(mr^2+3*mi^2)+sqrt(g^22*a*g+b^2+a^2)*(mr^2+mi^2)2*b*mi*mr)/(mi^2mr^2)] The problem is that the solution involves g. I know there are solutions, because Mathematica could find 4 of them in terms of a, b, mr, and mi only.  Comment By: Nobody/Anonymous (nobody) Date: 20081014 09:09 Message: I don't know if it is related, but I have a much simpler example of the same behaviour : (%i14) solve( [e^x=0],[x] ); (%o14) [e^x=0] but (%i15) solve( [e^(x)=0],[x] ); (%o15) [] The latter is correct.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=2042069&group_id=4933 