Screenshot instructions:
Windows
Mac
Red Hat Linux
Ubuntu
Click URL instructions:
Rightclick on ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)
You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(39) 
_{Oct}
(30) 
_{Nov}
(75) 
_{Dec}
(28) 
2018 
_{Jan}
(70) 
_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 

1
(3) 
2
(6) 
3
(3) 
4
(2) 
5
(2) 
6
(6) 
7
(2) 
8

9
(1) 
10
(1) 
11
(2) 
12

13
(1) 
14
(2) 
15
(17) 
16
(5) 
17
(2) 
18
(4) 
19

20
(1) 
21

22
(22) 
23
(5) 
24

25

26
(1) 
27

28
(4) 
29
(1) 
30






From: SourceForge.net <noreply@so...>  20080604 12:59:44

Bugs item #1984464, was opened at 20080604 05:59 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1984464&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Documentation Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: No documentation for topoly or topoly_solver Initial Comment: The packages topoly and topoly_solver have no documentation. In <http://www.math.utexas.edu/pipermail/maxima/2008/011921.html>;, Barton Willis suggested reporting this as a bug and volunteered to be the assignee. Thank you very much for that, Barton. I'll appear as anonymous, but I'm Dan Hatton <vi5u0maxima@...>.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1984464&group_id=4933 
From: SourceForge.net <noreply@so...>  20080604 11:20:05

Bugs item #1981623, was opened at 20080601 22:39 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1981623&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Satoshi Adachi (satoshi_adachi) Assigned to: Nobody/Anonymous (nobody) Summary: wrong sign of sqrt() Initial Comment: Dear Developers of Maxima, I found that sqrt() returns the incorrect expression that has the sign opposite to the ture expression when some certain argument is given to sqrt(). Namely, sqrt() interprets incorrectly the database that is prepared by assume(). Here is an demonstration program:  /* * wrong_sign_of_sqrt.maxima * * S.Adachi 2008/06/01 */ display2d:false; assume(x >= 0, x <= 1); correct_result_1:sqrt((x1)^2); correct_result_2:sqrt(1/(x1)^2); correct_result_3:sqrt(a*(x1)^2); incorrect_result_1:sqrt(a/(x1)^2); incorrect_result_2:sqrt(a^2/(x1)^2); incorrect_result_3:sqrt(x^2/(x1)^2); /* END */  The result of execution is as follows:  Maxima 5.14.0cvs http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) batch(wrong_sign_of_sqrt.maxima) batching #p/Volumes/HFS+2/home/adachi/work/299/wrong_sign_of_sqrt.maxima (%i2) display2d : false (%o2) false (%i3) assume(x >= 0,x <= 1) (%o3) [x >= 0,x <= 1] (%i4) correct_result_1:sqrt((x1)^2) (%o4) 1x (%i5) correct_result_2:sqrt(1/(x1)^2) (%o5) 1/(1x) (%i6) correct_result_3:sqrt(a*(x1)^2) (%o6) sqrt(a)*(1x) (%i7) incorrect_result_1:sqrt(a/(x1)^2) (%o7) sqrt(a)/(x1) (%i8) incorrect_result_2:sqrt(a^2/(x1)^2) (%o8) abs(a)/(x1) (%i9) incorrect_result_3:sqrt(x^2/(x1)^2) (%o9) x/(x1) (%o10) "wrong_sign_of_sqrt.maxima"  I wonder why sqrt() returns the wrong expression if sqrt((x1)^2) appears in the denominator of some fraction in the argument that is more complex than some threshold (e.g. the numerator is not a simple number or something like that). I think that this is a very severe bug of sqrt() and the database that is prepared by assume(). This bug puts many user programs to the state producing many wrong results. Please fix this severe bug. Sincerely yours, Satoshi Adachi  >Comment By: Barton Willis (willisbl) Date: 20080604 06:20 Message: Logged In: YES user_id=895922 Originator: NO As a workaround, you might try setting radexpand to false: (%i1) assume(0 < x, x <= 1)$ (%i2) sqrt(a/(x1)^2); (%o2) sqrt(a)/(x1) (%i3) sqrt(a/(x1)^2), radexpand : false; (%o3) sqrt(a/(x1)^2)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1981623&group_id=4933 