You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(27) 
_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(2) 
2

3

4
(4) 
5
(9) 
6

7
(1) 
8

9
(4) 
10
(1) 
11
(4) 
12
(3) 
13
(6) 
14
(6) 
15
(3) 
16
(6) 
17
(1) 
18
(5) 
19
(4) 
20

21
(3) 
22
(1) 
23
(2) 
24
(7) 
25
(5) 
26

27
(3) 
28
(7) 
29
(1) 
30
(7) 



From: SourceForge.net <noreply@so...>  20080413 18:30:03

Bugs item #1755392, was opened at 20070717 06:31 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1755392&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Trigonometry Group: None >Status: Closed >Resolution: Works For Me Priority: 4 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: trig with xxx[%pi] arguments Initial Comment: The trig functions have trouble with some arguments that involve xxx[%pi] or xxx[%pi + 1], or ... ; for example (%i1) cos(2*%pi + a[%pi]); (%o1) 1 (%i2) sin(2*%pi + a[%pi]); (%o2) 0 (%i3) tan(2*%pi + a[%pi]); (%o3) 0 (%i15) cos(2*%pi + a[%pi+1]); (%o15) 1  >Comment By: Dan Gildea (dgildea) Date: 20080413 14:30 Message: Logged In: YES user_id=1797506 Originator: NO Seems OK in current cvs. (%i42) cos(2*%pi + a[%pi]); (%o42) cos(a[%pi]) (%i43) sin(2*%pi + a[%pi]); (%o43) sin(a[%pi]) (%i44) tan(2*%pi + a[%pi]); (%o44) tan(a[%pi]) (%i45) cos(2*%pi + a[%pi+1]); (%o45) cos(a[%pi+1])  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1755392&group_id=4933 
From: SourceForge.net <noreply@so...>  20080413 18:26:54

Bugs item #1755550, was opened at 20070717 12:03 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1755550&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Trigonometry Group: None >Status: Closed >Resolution: Fixed Priority: 3 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: trig inconsistent about periodicity rules Initial Comment: OK  use perodicity to simplify to zero: (%i5) cos(2*%pi + %e^2)  cos(%e^2); (%o5) 0 Not so OK: (%i6) cos(2*%pi + %pi^2)  cos(%pi^2); (%o6) cos(%pi^2+2*%pi)cos(%pi^2) Sure, we can apply trigexpand: (%i7) trigexpand(%); (%o7) 0 This isn't a bug, I suppose. But we could do better.  >Comment By: Dan Gildea (dgildea) Date: 20080413 14:26 Message: Logged In: YES user_id=1797506 Originator: NO Fixed in trigi.lisp rev 1.30. (%i40) cos(2*%pi + %pi^2)  cos(%pi^2); (%o40) 0  Comment By: Harald Geyer (hgeyer) Date: 20070717 17:57 Message: Logged In: YES user_id=929336 Originator: NO I think the problem is, that %piargs only touches expressions that are linear in %pi. Compare this with Bug #1553866.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1755550&group_id=4933 
From: SourceForge.net <noreply@so...>  20080413 18:26:00

Bugs item #1553866, was opened at 20060907 01:13 Message generated for change (Settings changed) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1553866&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Trigonometry Group: None >Status: Closed >Resolution: Fixed Priority: 3 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Nobody/Anonymous (nobody) Summary: %piargs inconsistent behavior Initial Comment: (1) I can't find documenation for %piargs. (2) The way %piargs works is inconsistent and silly: (%i34) cos(a*x + %pi); (%o34) cos(a*x) (%i35) cos(%pi*x + %pi); (%o35) cos(%pi*x+%pi) < why not cos(%pi*x) ? (3) When %piargs is true, simplifying nfold compositions of trig functions takes O(3^n) time. This is due to the function linearp that does expand and forces a new simplification. Try cos(cos(....(x)))) with %piargs true then with %piargs false. Use about 14 compositions. So making %piargs less silly will also make things like cos(cos(...(x)))) much faster. Barton  >Comment By: Dan Gildea (dgildea) Date: 20080413 14:25 Message: Logged In: YES user_id=1797506 Originator: NO (1) Documentation has been added previously. (2) Fixed in trigi.lisp rev 1.30 (%i39) cos(%pi*x + %pi); (%o39) cos(%pi*x) (3) Faster now, too.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1553866&group_id=4933 
From: SourceForge.net <noreply@so...>  20080413 18:24:24

Bugs item #903190, was opened at 20040223 22:15 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=903190&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Trigonometry Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: sin(%pi+%pi*x) doesn't simplify Initial Comment: sin(%pi+%pi*x) doesn't simplify (cf 580721) ...similarly for other trig functions. The problem is that the %piargs code only looks for xxx+k*%pi/2 where xxx is %pifree. Even sin(f(%pi)+%pi) doesn't simplify! There are two main ways to try to fix this: 1) *Add* a purely syntactic check before or after the existing semantic check. This is appealing because a) it will clearly work and b) it can't screw up the form of the expression. 2) Replace the current semantic check with one which looks for a k*%pi/2 term among other terms. For example, sin((%pi+1)^3) has a 12*%pi term, so could simplify to sin(%pi^3+6*%pi^2+8). But is that really useful? I don't think so, and if the user wanted it with the syntactic approach, s/he could just use expand. Even less useful would be sin((%pi+1)^312*%pi). So I think solution (1) is better, even if it seems inelegant to do two independent checks.  >Comment By: Dan Gildea (dgildea) Date: 20080413 14:24 Message: Logged In: YES user_id=1797506 Originator: NO Fixed in trigi.lisp rev 1.30 (using solution 2 above, however). (%i32) sin(%pi+%pi*x); (%o32) sin(%pi*x) (%i33) sin((%pi+1)^3); (%o33) sin(%pi^3+3*%pi^2+1)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=903190&group_id=4933 
From: SourceForge.net <noreply@so...>  20080413 18:18:08

Bugs item #580721, was opened at 20020712 14:38 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=580721&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Trigonometry Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Raymond Toy (rtoy) Assigned to: Nobody/Anonymous (nobody) Summary: trigexpand bug Initial Comment: Consider this: (C1) display2d:false; (D1) FALSE (C2) tan(%pi/2+x); (D2) COT(x) (C3) tan(%pi/2+%pi*x); (D3) TAN(%PI*x+%PI/2) (C4) %,trigexpand; Division by 0  an error. Quitting. To debug this try DEBUGMODE(TRUE);) d3 should have been expanded into cot(%pi*x) instead of getting a division by zero error.  >Comment By: Dan Gildea (dgildea) Date: 20080413 14:18 Message: Logged In: YES user_id=1797506 Originator: NO Fixed in trigi.lisp rev 1.30 (%i29) tan(%pi/2+%pi*x); (%o29) cot(%pi*x) (%i30) declare(n, integer); (%o30) done (%i31) tan(n*2*%pi); (%o31) 0  Comment By: Dan Gildea (dgildea) Date: 20080325 21:29 Message: Logged In: YES user_id=1797506 Originator: NO The proposed patch disables the following simplification: (%i1) declare(n, integer); (%o1) done (%i2) tan(n*2*%pi); (%o2) 0 However, it almost fixes bugs 903190, 1553866 and 1755550.  Comment By: Rupert Swarbrick (rswarbrick) Date: 20071228 12:15 Message: Logged In: YES user_id=1673565 Originator: NO I think I've posted a patch onto the mailing list that fixes this. I can't work out how to attach files here, so the link is: http://thread.gmane.org/gmane.comp.mathematics.maxima.general/19076  Comment By: Rupert Swarbrick (rswarbrick) Date: 20071226 21:38 Message: Logged In: YES user_id=1673565 Originator: NO So the first thing that's wrong is that %piargstan/cot shouldn't return nonnil for stuff like tan(pi/2) as they aren't defined, let alone simplifiable. Here's an amended and reformatted version with variables renamed and a possible bug due to reuse of variable names eliminated too (I think) (defun %piargstan/cot (x) (displa x) (let ((coeff (linearize (coefficient x '$%pi 1))) (zlrem (coefficient x '$%pi 0)) (sinofcoeffpi) (cosofcoeffpi)) (cond ((and (zerop1 zlrem) (setq sinofcoeffpi (%piargs coeff nil)) (not (zerop1 (setq cosofcoeffpi (%piargs (cons (car coeff) (rplus 1//2 (cdr coeff))) nil))))) ;; sinofcoeffpi and cosofcoeffpi are only nonnil if they ;; are constants that %piargsoffset could compute, and we just ;; checked that cosofcoeffpi was nonzero. Thus we can just ;; return their quotient. (div sinofcoeffpi cosofcoeffpi)) ((not (mevenp (car coeff))) nil) ((integerp (setq x (mmod (cdr coeff) 2))) (consexp '%tan zlrem)) ((or (alike1 1//2 x) (alike1 '((rat) 3 2) x)) (neg (consexp '%cot zlrem))))))  Comment By: Rupert Swarbrick (rswarbrick) Date: 20071226 21:29 Message: Logged In: YES user_id=1673565 Originator: NO Ah. Of course tan(pi/2) = infinity ...  Comment By: Rupert Swarbrick (rswarbrick) Date: 20071225 20:10 Message: Logged In: YES user_id=1673565 Originator: NO Hi, a bit more information: the error's caused by a (div 1 0) which gets returned in %piargstan/cot, called by simp%tan. You can reproduce more simply by just calling tan(%pi/2), trigexpand; I'm trying to work out what the functions are _supposed_ to do. Maybe then I'll be able to fix it!  Comment By: Robert Dodier (robert_dodier) Date: 20060326 18:40 Message: Logged In: YES user_id=501686 For the record, same problem observed in maxima 5.9.3.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=580721&group_id=4933 
From: SourceForge.net <noreply@so...>  20080413 17:47:22

Bugs item #1941444, was opened at 20080413 19:47 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1941444&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core Group: Includes proposed fix Status: Open Resolution: None Priority: 5 Private: No Submitted By: Crategus (crategus) Assigned to: Nobody/Anonymous (nobody) Summary: Inconsistent use of global $DEBUGMODE Initial Comment: I think there is a small inconsistency with the global variable $DEBUGMODE. ********** The documentation says: Option variable: debugmode Default value: false When a Maxima error occurs, Maxima will start the debugger if debugmode is true. ... ********** Intern in the code Maxima only uses the global *MDEBUG*. When you assign the value TRUE or FALSE to $DEBUGMODE the global *MDEBUG* will be set with the assignfunction DEBUGMODE1() and all is correct. But, there is also the undocumented function $DEBUGMODE(). In the case of an error the user gets the information " an error. To debug this try debugmode(true)". So the user knows about the function, too. If you call this function the global *MDEBUG* will be set correctly as in the case above. But now the global $DEBUGMODE is not set to the new value. A program which tests the global $DEBUGMODE might not be sure if Maxima is in debugmode or not. The value of $DEBUGMODE depends on the way we have entered the debugmode. A correction in suprv1.lisp might be: (defmfun $debugmode (x) (setq $debugmode x) ; New line: Set the global $debugmode, too. (debugmode1 nil x)) Here is the assignfunction from suprv1.lisp which sets the global *MDEBUG*: (defun debugmode1 (assignvar y) (declare (ignore assignvar)) (setq *mdebug* (setq *rset y))) Crategus  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1941444&group_id=4933 