You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(53) 
_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2
(2) 
3
(1) 
4

5

6
(4) 
7

8

9
(3) 
10
(1) 
11
(4) 
12
(3) 
13

14
(4) 
15
(6) 
16

17
(6) 
18
(6) 
19
(4) 
20
(10) 
21
(6) 
22
(3) 
23
(2) 
24
(1) 
25
(1) 
26
(11) 
27
(6) 
28
(4) 
29
(11) 
30
(2) 
31






From: SourceForge.net <noreply@so...>  20071209 22:57:42

Bugs item #1847543, was opened at 20071209 23:57 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1847543&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Henrik Holst (hholst) Assigned to: Nobody/Anonymous (nobody) Summary: Integration problem of a special periodic function Initial Comment: Hello Maxima developers, I am trying to integrate f(x) := 1/(11/10+sin(2*%pi*x)); from x=0 to x=1. It works in Mathematica 5, and gives the correct answer: 10/Sqrt(21) Maxima gives no answer however it gives an answer if I input g(x) := 1/(11/10+sin(x)); and integrate from x=0 to x=2*%pi. Also (maybe related), if you try to integrate with a constant "a" times x instead of 2*%pi*x, maxima asks for the sign of a. If the reply is "positive" it just comsumes 100% CPU. [1] [1] Investigation by lindi @ freenode irc Maxima version: 5.12.0 Maxima build date: 21:41 7/20/2007 host type: x86_64unknownlinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.7  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1847543&group_id=4933 
From: SourceForge.net <noreply@so...>  20071209 17:07:18

Bugs item #1845375, was opened at 20071206 04:18 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1845375&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Satoshi Adachi (satoshi_adachi) Assigned to: Nobody/Anonymous (nobody) Summary: factcomb() in 5.13.0 gives wrong result Initial Comment: y: 3*x/(2*3^x*x!); z:factcomb(y); is calculated by maxima5.13.0 as Maxima 5.13.0 http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. This is a development version of Maxima. The function bug_report() provides bug reporting information. (%i1) batch(bug01A.maxima) batching #p/Volumes/HFS+2/home/adachi/work/270/bug01A.maxima 3 x (%i2) y :  x 2 3 x! 3 x (%o2)  x 2 3 x! (%i3) z : factcomb(y) 1  x 2 3 (%o3)  (x  1)! This is wrong. Maxima5.9.2 gives the correct result as Maxima 5.9.2 http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. This is a development version of Maxima. The function bug_report() provides bug reporting information. (%i1) batch(bug01A.maxima) batching #p/Volumes/HFS+2/home/adachi/work/270/bug01A.maxima 3 x (%i2) y :  x 2 3 x! 3 x (%o2)  x 2 3 x! (%i3) z : factcomb(y) 3 (%o3)  x 2 3 (x  1)!  >Comment By: Dan Gildea (dgildea) Date: 20071209 12:07 Message: Logged In: YES user_id=1797506 Originator: NO This was caused by a general simplification problem: 3*(1/2)*3^x => 2*3^(x+1) Fixed in simp.lisp rev 1.46.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1845375&group_id=4933 
From: SourceForge.net <noreply@so...>  20071209 17:05:46

Bugs item #1407378, was opened at 20060116 09:35 Message generated for change (Comment added) made by dgildea You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1407378&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Complex Group: None >Status: Closed >Resolution: Fixed Priority: 5 Private: No Submitted By: Robert Dodier (robert_dodier) Assigned to: Nobody/Anonymous (nobody) Summary: polarform returns a rectangular expression for float argumen Initial Comment: polarform (1.0 + %i); => 1.414213562373095 (.7071067811865475 %i + .7071067811865476) build_info(); => Maxima version: 5.9.2.19cvs Maxima build date: 16:26 1/15/2006 host type: i686redhatlinuxgnu lispimplementationtype: SBCL lispimplementationversion: 0.9.4 In 5.9.2: polarform (1.0 + %i); => 1.414213562373095 * %e^(0.78539816339745*%i)  >Comment By: Dan Gildea (dgildea) Date: 20071209 12:05 Message: Logged In: YES user_id=1797506 Originator: NO In simp.lisp rev 1.46, made numeric evaluation of exp(%i*float) dependent on %emode, which is set to false inside polarform. (%i2) polarform(1.0 + %i); (%o2) 1.414213562373095*%e^(.7853981633974483*%i) (%i3) ev(%); (%o3) 1.414213562373095*(.7071067811865475*%i+.7071067811865476) (%i4) polarform(1+%i); (%o4) sqrt(2)*%e^(%i*%pi/4) (%i5) ev(%); (%o5) sqrt(2)*(sqrt(2)*%i/2+sqrt(2)/2) (%i6) %emode:false; (%o6) false (%i7) polarform(1.0 + %i); (%o7) 1.414213562373095*%e^(.7853981633974483*%i) (%i8) ev(%); (%o8) 1.414213562373095*%e^(.7853981633974483*%i) (%i9) polarform(1+%i); (%o9) sqrt(2)*%e^(%i*%pi/4) (%i10) ev(%); (%o10) sqrt(2)*%e^(%i*%pi/4)  Comment By: Raymond Toy (rtoy) Date: 20060201 10:33 Message: Logged In: YES user_id=28849 FWIW, here is a replacement that preserves exponential form. But see also the discussion at http://www.math.utexas.edu/pipermail/maxima/2006/011955.html (defmfun $polarform (xx) (cond ((and (not (atom xx)) (memq (caar xx) '(mequal mlist $matrix))) (cons (car xx) (mapcar #'$polarform (cdr xx)))) (t ((lambda (aas $%emode) (mul (car aas) `((mexpt simp) $%e ,(mul '$%i (cdr aas))))) (absarg xx) nil))))  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1407378&group_id=4933 