You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 







1

2
(2) 
3
(1) 
4

5

6
(4) 
7

8

9
(3) 
10
(1) 
11
(4) 
12
(3) 
13

14
(4) 
15
(6) 
16

17
(6) 
18
(6) 
19
(4) 
20
(10) 
21
(6) 
22
(3) 
23
(2) 
24
(1) 
25
(1) 
26
(11) 
27
(6) 
28
(4) 
29
(11) 
30
(2) 
31






From: SourceForge.net <noreply@so...>  20071212 20:34:35

Bugs item #1726550, was opened at 20070527 18:01 Message generated for change (Comment added) made by srci You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1726550&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Simplification Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Barton Willis (willisbl) Assigned to: Robert Dodier (robert_dodier) Summary: not bugs Initial Comment: (1) not signals an error for a CRE argument: (%i1) not(rat(x)); Maxima encountered a Lisp error: (2) not allows more than one argument: (%i2) not(a,b); (%o2) not b (3) not signals an error for a subscripted function argument (%i3) not(f[1](x)); Maxima encountered a Lisp error: Error in PROGN [or a callee]: Bad plist ((1 DATA (((MGRP (4) not signals an error for a taylor poly argument: (%i14) not(taylor(x,x,0,5)); Maxima encountered a Lisp error:  Comment By: Rafael Cantero (srci) Date: 20071212 20:34 Message: Logged In: YES user_id=1958656 Originator: NO About (2): "The logical negation operator. not is a prefix operator; its operand is a Boolean expression, and its result is a Boolean value. not forces evaluation (like is) of its operand. " (from Maxima manual) in other words:  not is not a function. Parenthesized list return last argument: not (a,b) must give not b  Comment By: Barton Willis (willisbl) Date: 20070527 23:05 Message: Logged In: YES user_id=895922 Originator: YES 'and' and 'or' have similar problems: try f[1](x) and p, x or rat(x), taylor(x,x,0,2) and p, ...  Comment By: Barton Willis (willisbl) Date: 20070527 18:07 Message: Logged In: YES user_id=895922 Originator: YES One more: (%i1) not(a >= b); (%o1) a<b (%i2) tellsimp(a < b, true); (%o2) [<rule1,false] (%i3) not(a >= b); (%o3) a<b (%i4) expand(%,0,0); (%o4) true (%o3) isn't simplified.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1726550&group_id=4933 
From: SourceForge.net <noreply@so...>  20071212 15:43:25

Bugs item #1731624, was opened at 20070605 12:05 Message generated for change (Comment added) made by nobody You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1731624&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Integration Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Sanjoy Mahajan (sm324) Assigned to: Nobody/Anonymous (nobody) Summary: asked about sign of yx in integral containing only z Initial Comment: Entering integrate(exp(sqrt(z^3)),z,0,1); produces Is yx positive or negative? But there is no yx in the integrand. I thought maxima might have an implicit rule about z = x + iy, so I tried the integral using q as the variable instead of z, but the same question was asked. Maxima version: 5.12.0 Maxima build date: 3:18 5/23/2007 host type: i686pclinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.7 (it's the Ubuntu 5.12.01ubuntu1 package from the upcoming release of Ubuntu recompiled on my Ubuntu feisty system).  Comment By: Nobody/Anonymous (nobody) Date: 20071212 07:43 Message: Logged In: NO This is likely the same problem, but I am not completely sure, so I decided to add this as a comment here rather than open a new bug report. Entering: limit(x*(1  x*log(1 + 1/x)),x,0); produces Is x + 1 positive or negative? There are two things wrong with this 1) When x > 0 then x+1 is clearly always positive. Presumably the intended question was "Is x positive or negative?" 2) The value of the limit does not depend on the sign of x, it is 0 in either case. Maxima version: 5.13.99rc1 Maxima build date: 21:11 12/3/2007 host type: i686redhatlinuxgnu lispimplementationtype: CLISP lispimplementationversion: 2.39 (20060716) (built on boulder.infotility.com [192.168.0.23]) (standard rpm from Sourceforge)  Comment By: Robert Dodier (robert_dodier) Date: 20070717 13:10 Message: Logged In: YES user_id=501686 Originator: NO Another example (from the mailing list): integrate( exp( sqrt(x) ), x, 1, 5); => Is yx positive or negative?  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1731624&group_id=4933 
From: SourceForge.net <noreply@so...>  20071212 00:51:46

Bugs item #1845363, was opened at 20071206 02:57 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1845363&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: Lisp Core  Polynomials Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Satoshi Adachi (satoshi_adachi) Assigned to: Nobody/Anonymous (nobody) Summary: a bug in ratsimp()? Initial Comment: ratsimp() in Maxima5.13.0 returns a strange result. cat maxima5.13.0bugessence.maxima tmp:n^2/(n^2+sqrt(5)*n+2*n+sqrt(5)) + sqrt(5)*n/(n^2+sqrt(5)*n+2*n+sqrt(5))  1/(n^2+sqrt(5)*n+2*n+sqrt(5)); Maxima 5.13.0 http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. This is a development version of Maxima. The function bug_report() provides bug reporting information. (%i1) batch(maxima5.13.0bugessence.maxima) batching #p/Volumes/HFS+2/home/adachi/work/269/maxima5.13.0bugessence.maxima  1 sqrt(5) n (%i2) tmp :  +  2 2 sqrt(5) + 2 n + sqrt(5) n + n sqrt(5) + 2 n + sqrt(5) n + n 2 n +  2 sqrt(5) + 2 n + sqrt(5) n + n 2 n sqrt(5) n (%o2)  +  2 2 n + sqrt(5) n + 2 n + sqrt(5) n + sqrt(5) n + 2 n + sqrt(5) 1   2 n + sqrt(5) n + 2 n + sqrt(5) (%i3) tmp : ratsimp(tmp) 6 5 4 3 (%o3) (n + (3 sqrt(5) + 4) n + (10 sqrt(5) + 18) n + (11 sqrt(5) + 36) n 2 + (4 sqrt(5) + 16) n + (sqrt(5)  10) n  5) 6 5 4 3 /(n + (3 sqrt(5) + 6) n + (15 sqrt(5) + 27) n + (29 sqrt(5) + 68) n 2 + (27 sqrt(5) + 75) n + (15 sqrt(5) + 30) n + 5 sqrt(5)) =========================================== The following is the result obtained by maxima5.9.2: Maxima 5.9.2 http://maxima.sourceforge.net Using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (aka GCL) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. This is a development version of Maxima. The function bug_report() provides bug reporting information. (%i1) batch(maxima5.13.0bugessence.maxima) batching #p/Volumes/HFS+2/home/adachi/work/269/maxima5.13.0bugessence.maxima  1 sqrt(5) n (%i2) tmp :  +  2 2 sqrt(5) + 2 n + sqrt(5) n + n sqrt(5) + 2 n + sqrt(5) n + n 2 n +  2 sqrt(5) + 2 n + sqrt(5) n + n 2 n sqrt(5) n (%o2)  +  2 2 n + sqrt(5) n + 2 n + sqrt(5) n + sqrt(5) n + 2 n + sqrt(5) 1   2 n + sqrt(5) n + 2 n + sqrt(5) (%i3) tmp : ratsimp(tmp) 2 n + sqrt(5) n  1 (%o3)  2 n + (sqrt(5) + 2) n + sqrt(5)  >Comment By: Barton Willis (willisbl) Date: 20071211 18:51 Message: Logged In: YES user_id=895922 Originator: NO What is strange about the following: (%i4) tmp:n^2/(n^2+sqrt(5)*n+2*n+sqrt(5)) + sqrt(5)*n/(n^2+sqrt(5)*n+2*n+sqrt(5))$ (%i5) tmp  ratsimp(tmp)$ (%i6) ratsimp(%); (%o6) 0 Try display2d : false and reposting. It's hard to read your bug report.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1845363&group_id=4933 