You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(39) 
_{Oct}
(30) 
_{Nov}
(38) 
_{Dec}

S  M  T  W  T  F  S 





1
(4) 
2
(2) 
3
(3) 
4
(10) 
5
(2) 
6
(4) 
7
(4) 
8
(5) 
9
(1) 
10

11
(11) 
12
(2) 
13
(1) 
14
(8) 
15
(1) 
16
(3) 
17
(4) 
18
(5) 
19
(14) 
20
(5) 
21
(5) 
22
(15) 
23
(16) 
24
(1) 
25
(3) 
26
(3) 
27

28
(2) 



From: SourceForge.net <noreply@so...>  20070208 02:14:41

Bugs item #1643519, was opened at 20070124 06:05 Message generated for change (Comment added) made by robert_dodier You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1643519&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Xmaxima or other UI Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Maxima Help on Windows XP prevents access to xmaxima 5.11.0 Initial Comment: When the HTML Help is launched on xmaxima 5.11.0, by choosing "Maxima Manual" on the "Help" menu, it is not possible to go back to the xmaxima window. Only after closing the HTML Help window one can gain access to the xmaxima window again.  >Comment By: Robert Dodier (robert_dodier) Date: 20070207 19:14 Message: Logged In: YES user_id=501686 Originator: NO Also observed on my Win XP desktop box.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1643519&group_id=4933 
From: SourceForge.net <noreply@so...>  20070208 02:05:29

Bugs item #1648352, was opened at 20070130 18:22 Message generated for change (Comment added) made by robert_dodier You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1648352&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Lisp Core Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: rules and pattern bug Initial Comment: hi i think there is a concerning matchdeclare or the matchdeclare documentation: (%i1) matchdeclare(aa,true,gg,lambda([yy],evenp(yy) and (yy>1))); (%o1) done (%i2) let(sin(aa)^gg,(1cos(aa)^2)^(gg/2)); gg 2 gg/2 (%o2) sin (aa) > (1  cos (aa)) (%i3) letsimp(sin(x)^2); 2 (%o3) 1  cos (aa) (%i4) letsimp(sin(x)^3); 2 3/2 (%o4) (1  cos (aa)) (%i1) and (%i2) according to the manual (i hope) (%o3) is not correct. the pattern variable should not appear in the expression (%o4) is not correct. the rule should not be applied. the reason for (%o4) is clear if we take a look at the declaration of the pattern variables (%i5) printprops (all, matchdeclare); (%o5) [lambda([yy], evenp(yy) and yy > 1, gg), true(aa)] the pattern variable is appended to the body of the öambd expression. a workaround is (%i6) matchdeclare(aa,true,gg,lambda([yy],evenp(yy) and (yy>1))()); (%o6) done (%i7) let(sin(aa)^gg,(1cos(aa)^2)^(gg/2)); gg 2 gg/2 (%o7) sin (aa) > (1  cos (aa)) (%i8) letsimp(sin(x)^2); 2 (%o8) 1  cos (aa) (%i9) letsimp(sin(x)^3); 3 (%o9) sin (x) (%i10) printprops (all, matchdeclare); (%o10) [lambda([yy], evenp(yy) and yy > 1)(gg), true(aa)] now the lambda is evaluated correctly but the pattern variable again appears in the reduced expression. these problems appear in Maxima 5.11.0 as well as in Maxima 5.9.1 guenter.nowak@...  >Comment By: Robert Dodier (robert_dodier) Date: 20070207 19:05 Message: Logged In: YES user_id=501686 Originator: NO I've committed a patch (to src/nisimp.lisp) to fix the failure to call the lambda expression correctly. However there remains the problem that the pattern variable aa appears in the result instead of the actual variable x. I looked but I wasn't able to see why that happens.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1648352&group_id=4933 
From: SourceForge.net <noreply@so...>  20070208 01:51:36

Bugs item #1651508, was opened at 20070203 16:05 Message generated for change (Settings changed) made by robert_dodier You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651508&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Share Libraries Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: load(affine) fails Initial Comment: Maxima version: 5.11.0 Maxima build date: 22:25 12/26/2006 host type: i686pcmingw32 lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.8 (%i1) load(affine); Loading C:/Programme/Maxima5.11.0/share/maxima/5.11.0/share/affine/sysdeclaim.lisp Finished loading C:/Programme/Maxima5.11.0/share/maxima/5.11.0/share/affine/sysdeclaim.lisp ;  Binary file C:/Programme/Maxima5.11.0/share/maxima/5.11.0/share/affine/binarygcl/sloop.o is old or does not exist. ; Compile (and load) source file C:/Programme/Maxima5.11.0/share/maxima/5.11.0/share/affine/sloop.lisp instead? y; ;  Should I bother you if this happens again? Type "y" for yes or "n" for no. ;  Should I bother you if this happens again? n; ;  Should I compile while loading the system? Type "y" for yes or "n" for no. ;  Should I compile while loading the system? y; Compiling C:/Programme/Maxima5.11.0/share/maxima/5.11.0/share/affine/sloop.lisp. Load failed for C:/Programme/Maxima5.11.0/share/maxima/5.11.0/share/affine/affine.lisp  an error. To debug this try debugmode(true); (%i2) Incorrect syntax: Premature termination of input at ;. ; the problem can be resolved by creating a directory C:\Programme\Maxima5.11.0\share\maxima\5.11.0\share\affine\binarygcl guenter.nowak@...  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651508&group_id=4933 
From: SourceForge.net <noreply@so...>  20070208 01:50:21

Bugs item #1651948, was opened at 20070204 14:07 Message generated for change (Settings changed) made by robert_dodier You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651948&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Lisp Core  Solving equations Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: algsys/solve cannot find solutions Initial Comment: (%i169) p1:x*y^3+y^2+x^49*x/8$ (%i170) p2:y^4x^3*y9*y/8+x^2$ (%i180) algsys([p1,p2],[x,y]); (%o180) [[x = 1/2,y = 1],[x = 9/8,y = 9/8],[x = 1,y = 1/2],[x = 0,y = 0]] the system seems to have 4 (real) solutions. `? algsys' says: ... The method is as follows: (1) First the equations are factored and split into subsystems. (2) For each subsystem <S_i>, an equation <E> and a variable <x> are selected. The variable is chosen to have lowest nonzero degree. Then the resultant of <E> and <E_j> with respect to <x> is computed for each of the remaining equations <E_j> in the subsystem <S_i>. This yields a new subsystem <S_i'> in one fewer variables, as <x> has been eliminated. The process now returns to (1). ... so `algsys' uses the resultant of the two polynomial with respect to x or y. i do this by hand: (%i184) factor(resultant(p1,p2,x)); (%o184) 4096*(y1)*y*(2*y1)*(8*y9)*(y^2+y+1)*(4*y^2+2*y+1)*(64*y^2+72*y+81) (resultant with respect to x gives a similar result) this gives 6 additional solution for y that can be found by sove. if i substitute such an y in the original polyomial the resulting polynomials in x have degree 4 and are also solvable. why don't `algsys' or `solve' don't find these solution?  Comment By: Barton Willis (willisbl) Date: 20070205 05:45 Message: Logged In: YES user_id=895922 Originator: NO Here is a workaround for your equations; the workaround might help in general: (%i34) load(grobner)$ Loading maximagrobner $Revision: 1.2 $ $Date: 2006/11/08 03:40:02 $ (%i35) p1:x*y^3+y^2+x^49*x/8$ (%i36) p2:y^4x^3*y9*y/8+x^2$ (%i37) eqs : map('ratnumer, [p1,p2])$ (%i38) eqs : poly_reduced_grobner(eqs,[x,y])$ (%i39) algsys(eqs,[x,y]); (%o39) [[x=0,y=0],[x=1,y=1/2],[x=9/8,y=9/8],[x=1/2,y=1],[x=(sqrt(3)*%i1)/4,y=(sqrt(3)*%i+1)/2],[x= (sqrt(3)*%i+1)/4,y=(sqrt(3)*%i1)/2],[x=(9*sqrt(3)*%i9)/16,y=(9*sqrt(3)*%i+9)/16],[x=(9*sqrt(3)*%i+9)/16,y=(9*sqrt(3)*%i9)/16],[x=(sqrt(3)*%i1)/2,y= (sqrt(3)*%i+1)/4],[x=(sqrt(3)*%i+1)/2,y=(sqrt(3)*%i1)/4]]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651948&group_id=4933 
From: SourceForge.net <noreply@so...>  20070208 01:49:36

Bugs item #1654602, was opened at 20070207 14:43 Message generated for change (Settings changed) made by robert_dodier You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1654602&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. >Category: Lisp Core  Limit Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Kirill Smelkov (kirr) Assigned to: Nobody/Anonymous (nobody) Summary: limit(%e^b*erf(x), x, inf) asks sign(b) Initial Comment: (%i10) limit(%e^b*erf(x), x, inf); Is b positive, negative, or zero? pos; b (%o10) %e Maxima version: 5.11.0cvs Maxima build date: 21:36 2/7/2007 host type: i686pclinuxgnu lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.6  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1654602&group_id=4933 