You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(30) 
_{Aug}
(48) 
_{Sep}
(39) 
_{Oct}
(24) 
_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1
(4) 
2
(2) 
3
(3) 
4
(10) 
5
(2) 
6
(4) 
7
(4) 
8
(5) 
9
(1) 
10

11
(11) 
12
(2) 
13
(1) 
14
(8) 
15
(1) 
16
(3) 
17
(4) 
18
(5) 
19
(14) 
20
(5) 
21
(5) 
22
(15) 
23
(16) 
24
(1) 
25
(3) 
26
(3) 
27

28
(2) 



From: SourceForge.net <noreply@so...>  20070205 21:32:48

Bugs item #1651811, was opened at 20070204 11:49 Message generated for change (Settings changed) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651811&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None >Status: Closed >Resolution: Duplicate Priority: 5 Private: No Submitted By: guno (guno) Assigned to: Nobody/Anonymous (nobody) Summary: inf Initial Comment: hi, (%i44) build_info(); Maxima version: 5.11.0 Maxima build date: 22:25 12/26/2006 host type: i686pcmingw32 lispimplementationtype: GNU Common Lisp (GCL) lispimplementationversion: GCL 2.6.8 i think the way maxima handles inf,minf and infinity is nonsense: (%i25) limit(inf/inf); (%o25) 1 (%i26) limit(infinf); (%o26) 0 (%i29) limit(inf/x,x,inf); (%o29) 0 (%i36) limit(infx,x,inf); (%o36) minf (%i47) inf/inf; (%o47) 1  >Comment By: Stavros Macrakis (macrakis) Date: 20070205 16:32 Message: Logged In: YES user_id=588346 Originator: NO Yes, alas this is a known problem which has been reported before.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651811&group_id=4933 
From: SourceForge.net <noreply@so...>  20070205 12:45:33

Bugs item #1651948, was opened at 20070204 15:07 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651948&group_id=4933 Please note that this message will contain a full copy of the comment thread, including the initial issue submission, for this request, not just the latest update. Category: None Group: None Status: Open Resolution: None Priority: 5 Private: No Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: algsys/solve cannot find solutions Initial Comment: (%i169) p1:x*y^3+y^2+x^49*x/8$ (%i170) p2:y^4x^3*y9*y/8+x^2$ (%i180) algsys([p1,p2],[x,y]); (%o180) [[x = 1/2,y = 1],[x = 9/8,y = 9/8],[x = 1,y = 1/2],[x = 0,y = 0]] the system seems to have 4 (real) solutions. `? algsys' says: ... The method is as follows: (1) First the equations are factored and split into subsystems. (2) For each subsystem <S_i>, an equation <E> and a variable <x> are selected. The variable is chosen to have lowest nonzero degree. Then the resultant of <E> and <E_j> with respect to <x> is computed for each of the remaining equations <E_j> in the subsystem <S_i>. This yields a new subsystem <S_i'> in one fewer variables, as <x> has been eliminated. The process now returns to (1). ... so `algsys' uses the resultant of the two polynomial with respect to x or y. i do this by hand: (%i184) factor(resultant(p1,p2,x)); (%o184) 4096*(y1)*y*(2*y1)*(8*y9)*(y^2+y+1)*(4*y^2+2*y+1)*(64*y^2+72*y+81) (resultant with respect to x gives a similar result) this gives 6 additional solution for y that can be found by sove. if i substitute such an y in the original polyomial the resulting polynomials in x have degree 4 and are also solvable. why don't `algsys' or `solve' don't find these solution?  >Comment By: Barton Willis (willisbl) Date: 20070205 06:45 Message: Logged In: YES user_id=895922 Originator: NO Here is a workaround for your equations; the workaround might help in general: (%i34) load(grobner)$ Loading maximagrobner $Revision: 1.2 $ $Date: 2006/11/08 03:40:02 $ (%i35) p1:x*y^3+y^2+x^49*x/8$ (%i36) p2:y^4x^3*y9*y/8+x^2$ (%i37) eqs : map('ratnumer, [p1,p2])$ (%i38) eqs : poly_reduced_grobner(eqs,[x,y])$ (%i39) algsys(eqs,[x,y]); (%o39) [[x=0,y=0],[x=1,y=1/2],[x=9/8,y=9/8],[x=1/2,y=1],[x=(sqrt(3)*%i1)/4,y=(sqrt(3)*%i+1)/2],[x= (sqrt(3)*%i+1)/4,y=(sqrt(3)*%i1)/2],[x=(9*sqrt(3)*%i9)/16,y=(9*sqrt(3)*%i+9)/16],[x=(9*sqrt(3)*%i+9)/16,y=(9*sqrt(3)*%i9)/16],[x=(sqrt(3)*%i1)/2,y= (sqrt(3)*%i+1)/4],[x=(sqrt(3)*%i+1)/2,y=(sqrt(3)*%i1)/4]]  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=1651948&group_id=4933 