You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(29) 
_{Mar}

_{Apr}

_{May}

_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 





1

2
(2) 
3
(1) 
4

5
(2) 
6

7

8
(7) 
9
(6) 
10

11

12

13

14

15
(1) 
16
(2) 
17

18

19
(6) 
20

21
(3) 
22
(2) 
23
(1) 
24
(1) 
25

26
(2) 
27
(1) 
28

29
(2) 
30


From: SourceForge.net <noreply@so...>  20040421 14:48:04

Bugs item #938235, was opened at 20040419 18:02 Message generated for change (Comment added) made by willisbl You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=938235&group_id=4933 Category: Xmaxima Group: None Status: Open Resolution: None Priority: 5 Submitted By: Luis Claudio (gabryuri) Assigned to: Nobody/Anonymous (nobody) Summary: integrate((1/2)*u^21/u^5,u,1,sqrt(2)); is not correct... Initial Comment: Sorry, but in the integral (1/2)*u^21/u^5 with u=1 to sqrt(2) them Maxima program return SQRT(2) 1    3 6 Maxima comand: integrate((1/2)*u^21/u^5,u,1,sqrt (2)); But the answer correct is: sqrt(2) 17    3 48 See in MuPad, Maple or Mathematica. sorry by english. Luis Cláudio  Brasilia  Brazil. luis_claudio2000@...  >Comment By: Barton Willis (willisbl) Date: 20040421 09:48 Message: Logged In: YES user_id=895922 Thank you for reporting this bug; I suspect that the following bug is related to the one you found. (C2) integrate(1/x^5,x,1,sqrt(2)); (D2) 0 (C3) build_info(); Maxima version: 5.9.0.1cvs Maxima build date: 8:30 4/21/2004 host type: i686pcmingw32 lispimplementationtype: Kyoto Common Lisp lispimplementationversion: GCL 2.7.0 If you find more Maxima bugs, please report them. Regards, Barton  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=938235&group_id=4933 
From: SourceForge.net <noreply@so...>  20040421 12:47:21

Bugs item #676920, was opened at 20030129 12:47 Message generated for change (Comment added) made by vttoth You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=676920&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Martin Rubey (kratt5) Assigned to: Nobody/Anonymous (nobody) Summary: severe radcan bug Initial Comment: the following exhibits a bug (probably) in radcan (C1) p(u,k):=u^(1)+u^k; (C1)  1 k (D1) p(u, k) := u + u (C2) p1(u,k):=at(diff(p('u,k),'u),['u=u]); (D2) p1(u, k) := AT(DIFF(p('u, k), 'u), ['u = u]) (C3) p2(u,k):=at(diff(p('u,k),'u,2),['u=u]); (D3) p2(u, k) := AT(DIFF(p('u, k), 'u, 2), ['u = u]) (C4) tau:subst(solve(p1(u,k),u),u); Is k an integer? y; 1 (D4)  1  k + 1 k (C5) radcan(p(tau,k)/p2(tau,k)); k + 1 (D5)  k + 3 2   k + 1 k + 1 2 2 k + k (k  k)  which is correct  (C6) radcan(sqrt(%)); SQRT(k + 1) (D6)  1  k + 1 2 k SQRT(k + k)  which is bogus, evaluate D5 and D6 at k=2 for example  (C7) bug_report(); The Maxima bug database is available at http://sourceforge.net/tracker/?atid=104933&group_id=4933&func=browse Submit bug reports by following the 'Submit New' link on that page. Please include the following build information with your bug report:  Maxima version: 5.9.0rc3 Maxima build date: 21:0 11/26/2002 host type: i686pclinuxgnu lispimplementationtype: Kyoto Common Lisp lispimplementationversion: GCL25.0  The above information is also available from the Maxima function build_info(). maybe this is related to bug no 635338: http://sourceforge.net/tracker/index.php?func=detail&aid=635338&group_id=4933&atid=104933  Comment By: Viktor Toth (vttoth) Date: 20040421 08:47 Message: Logged In: YES user_id=1023504 I don't see the bug here, the result appears to be correct actually. D6 is the square root of the D5 expression, which is what it should be, or am I missing something? Viktor  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=676920&group_id=4933 
From: SourceForge.net <noreply@so...>  20040421 02:37:59

Bugs item #939022, was opened at 20040420 22:37 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=939022&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: matrix(...taylor...)^^1 wrong Initial Comment: Consider m: matrix([taylor(1+a*x,x,0,1),0], [0,taylor(1+d*x,x,0,1)]); Now, m^^1 => matrix([1/(d*x+1),0],[0,1/(d*x+1)]) There are two problems with this. First, the answer is incorrect. Compare: matrixmap(ratdisrep,m)^^1 => matrix([1/(a*x+1),0],[0,1/(d*x+1)]) Second, the answer is not in terms of taylor series. A silent ratdisrep was done in the middle, losing truncation information.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=939022&group_id=4933 