You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}

_{Jul}

_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(1) 
2
(1) 
3
(10) 
4

5

6
(3) 
7
(2) 
8
(3) 
9
(1) 
10

11
(4) 
12
(3) 
13

14
(2) 
15
(1) 
16

17
(2) 
18

19

20
(1) 
21

22

23
(1) 
24
(2) 
25
(3) 
26

27

28

29
(1) 
30
(1) 



From: SourceForge.net <noreply@so...>  20030425 23:59:54

Bugs item #727811, was opened at 20030426 01:59 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=727811&group_id=4933 Category: Lisp Core Group: None Status: Open Resolution: None Priority: 5 Submitted By: Jesper Harder (harder) Assigned to: Nobody/Anonymous (nobody) Summary: Patch for mactex.lisp Initial Comment: `tex' does not translate `and', `or', `not' and `#' to valid TeX expressions. Currently we get this: tex('(a # b)); => $$a # b$$ tex('(a and b)); => $$a(\and)b$$ tex('(a or b)); => $$a(\or)b$$ tex('(not a)); => $$\not a$$ Which are all invalid. `\not', `\and', `\or' and `#' should be replaced with `\neg', `\land', `\lor' and `\ne'. Additionally `or' and `and' should be texinfix not texnary. After applying the attached patch we get this: tex('(a # b)); => $$a\ne b$$ tex('(a and b)); => $$a\land b$$ tex('(a or b)); => $$a(\lor )b$$ tex('(not a)); => $$\neg\,a$$ The parens in `or' still aren't quite right, but at least it's valid TeX.  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=727811&group_id=4933 
From: SourceForge.net <noreply@so...>  20030425 15:35:19

Bugs item #727542, was opened at 20030425 15:35 Message generated for change (Tracker Item Submitted) made by Item Submitter You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=727542&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Martin Rubey (kratt5) Assigned to: Nobody/Anonymous (nobody) Summary: powerseries wrong Initial Comment: (C51) gf:2*(1751144*x4882*x^3+4324*x^42072*x^5+416*x^6+3189*x^2)/ (2*x1)^3/(4*x1)/(x1)^3$ (C52) taylor(gf,x,0,3); 2 3 (D52)/T/ 350 + 2262 x + 11634 x + 53650 x + . . . (C53) taylor(powerseries(gf,x,0),x,0,3); 2 3 (D53)/T/ 470 + 2862 x + 13524 x + 58750 x + . . . maybe this is related to sum(x^i,i,0,inf),x:0 giving 0, but I don't know... I checked D53 with Maple, so it seems that powerseries is wrong, not taylor. I converted the result of powerseries to the rational function again, and obtained: 2*(9407436*x41588*x^322066*x^5+40253*x^4+416*x^81816*x^7+7076*x^6+24227*x^2) /(2*x1)^3/(4*x1)/(x2)^2/(x1)^3 The difference between the two is 160*'SUM((I+1)*2^I*x^I,I,0,INF)160*'SUM((I+1)*2^(I2)*x^I,I,0,INF) so the reason might be a simple typo ( instead of + or the like)... Should be possible to correct this... Martin  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=727542&group_id=4933 
From: SourceForge.net <noreply@so...>  20030425 13:38:33

Bugs item #727032, was opened at 20030424 19:29 Message generated for change (Comment added) made by lical You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=727032&group_id=4933 Category: Lisp Core Group: Fix for 5.9.0 Status: Open Resolution: None Priority: 5 Submitted By: Nobody/Anonymous (nobody) Assigned to: Nobody/Anonymous (nobody) Summary: Too long integral result: integrate((9/cos(7*x)^2),x); Initial Comment: Hi, I think that: integrate((9/cos(7*x)^2),x); should give: 9*tan(7*x)/7 but I get a very long result that I don't know if is correct (i think not because if i try to derive it I don't get the original function...). Details about Maxima version:  Maxima Version: 5.9.0 Maxima Build date: 16:22 4/1/2003 host type: i686pclinuxgnu lispimplementationtype: CLISP lispimplementationversion: 2.29 (released 20020725) (built 3258193367) (memory 3258195754)   Comment By: Ricardo (lical) Date: 20030425 15:38 Message: Logged In: YES user_id=474377 So it is not a bug then... Excuse me if I disturbed :( Anyway, wouldn't it be interesting getting 9*tan(7*x)/7 instead of that long one? Thanks for your comment.  Comment By: Barton Willis (willisb) Date: 20030425 00:08 Message: Logged In: YES user_id=570592 I believe the antiderivative is correct; it's possible to show that the derivative of the antiderivative equals the integrand. But the simplification isn't automatic. (C1) display2d : false; (D1) FALSE (C2) f : 9 / (cos(7*x))^2; (D2) 9/COS(7*x)^2 (C3) integrate(f,x); (D3) 18*SIN(14*x)/(7*SIN(14*x)^2+7*COS(14*x)^2+14*COS (14*x)+7) (C4) diff(%,x)f; (D4) 252*COS(14*x)/(7*SIN(14*x)^2+7*COS(14*x)^2+14*COS (14*x)+7)+3528*SIN(14*x)^2/(7*SIN(14*x)^2+7*COS(14*x) ^2+14*COS(14*x)+7)^29/COS(7*x)^2 (C5) rat(exponentialize(%)); (D5) 0 Barton  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=727032&group_id=4933 