You can subscribe to this list here.
2002 
_{Jan}

_{Feb}

_{Mar}

_{Apr}

_{May}

_{Jun}
(67) 
_{Jul}
(61) 
_{Aug}
(49) 
_{Sep}
(43) 
_{Oct}
(59) 
_{Nov}
(24) 
_{Dec}
(18) 

2003 
_{Jan}
(34) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(42) 
_{May}
(46) 
_{Jun}
(15) 
_{Jul}
(64) 
_{Aug}
(62) 
_{Sep}
(22) 
_{Oct}
(41) 
_{Nov}
(57) 
_{Dec}
(56) 
2004 
_{Jan}
(48) 
_{Feb}
(47) 
_{Mar}
(33) 
_{Apr}
(39) 
_{May}
(6) 
_{Jun}
(17) 
_{Jul}
(19) 
_{Aug}
(10) 
_{Sep}
(14) 
_{Oct}
(74) 
_{Nov}
(80) 
_{Dec}
(22) 
2005 
_{Jan}
(43) 
_{Feb}
(33) 
_{Mar}
(52) 
_{Apr}
(74) 
_{May}
(32) 
_{Jun}
(58) 
_{Jul}
(18) 
_{Aug}
(41) 
_{Sep}
(71) 
_{Oct}
(28) 
_{Nov}
(65) 
_{Dec}
(68) 
2006 
_{Jan}
(54) 
_{Feb}
(37) 
_{Mar}
(82) 
_{Apr}
(211) 
_{May}
(69) 
_{Jun}
(75) 
_{Jul}
(279) 
_{Aug}
(139) 
_{Sep}
(135) 
_{Oct}
(58) 
_{Nov}
(81) 
_{Dec}
(78) 
2007 
_{Jan}
(141) 
_{Feb}
(134) 
_{Mar}
(65) 
_{Apr}
(49) 
_{May}
(61) 
_{Jun}
(90) 
_{Jul}
(72) 
_{Aug}
(53) 
_{Sep}
(86) 
_{Oct}
(61) 
_{Nov}
(62) 
_{Dec}
(101) 
2008 
_{Jan}
(100) 
_{Feb}
(66) 
_{Mar}
(76) 
_{Apr}
(95) 
_{May}
(77) 
_{Jun}
(93) 
_{Jul}
(103) 
_{Aug}
(76) 
_{Sep}
(42) 
_{Oct}
(55) 
_{Nov}
(44) 
_{Dec}
(75) 
2009 
_{Jan}
(103) 
_{Feb}
(105) 
_{Mar}
(121) 
_{Apr}
(59) 
_{May}
(103) 
_{Jun}
(82) 
_{Jul}
(67) 
_{Aug}
(76) 
_{Sep}
(85) 
_{Oct}
(75) 
_{Nov}
(181) 
_{Dec}
(133) 
2010 
_{Jan}
(107) 
_{Feb}
(116) 
_{Mar}
(145) 
_{Apr}
(89) 
_{May}
(138) 
_{Jun}
(85) 
_{Jul}
(82) 
_{Aug}
(111) 
_{Sep}
(70) 
_{Oct}
(83) 
_{Nov}
(60) 
_{Dec}
(16) 
2011 
_{Jan}
(61) 
_{Feb}
(16) 
_{Mar}
(52) 
_{Apr}
(41) 
_{May}
(34) 
_{Jun}
(41) 
_{Jul}
(57) 
_{Aug}
(73) 
_{Sep}
(21) 
_{Oct}
(45) 
_{Nov}
(50) 
_{Dec}
(28) 
2012 
_{Jan}
(70) 
_{Feb}
(36) 
_{Mar}
(71) 
_{Apr}
(29) 
_{May}
(48) 
_{Jun}
(61) 
_{Jul}
(44) 
_{Aug}
(54) 
_{Sep}
(20) 
_{Oct}
(28) 
_{Nov}
(41) 
_{Dec}
(137) 
2013 
_{Jan}
(62) 
_{Feb}
(55) 
_{Mar}
(31) 
_{Apr}
(23) 
_{May}
(54) 
_{Jun}
(54) 
_{Jul}
(90) 
_{Aug}
(46) 
_{Sep}
(38) 
_{Oct}
(60) 
_{Nov}
(92) 
_{Dec}
(17) 
2014 
_{Jan}
(62) 
_{Feb}
(35) 
_{Mar}
(72) 
_{Apr}
(30) 
_{May}
(97) 
_{Jun}
(81) 
_{Jul}
(63) 
_{Aug}
(64) 
_{Sep}
(28) 
_{Oct}
(45) 
_{Nov}
(48) 
_{Dec}
(109) 
2015 
_{Jan}
(106) 
_{Feb}
(36) 
_{Mar}
(65) 
_{Apr}
(63) 
_{May}
(95) 
_{Jun}
(56) 
_{Jul}
(48) 
_{Aug}
(55) 
_{Sep}
(100) 
_{Oct}
(57) 
_{Nov}
(33) 
_{Dec}
(46) 
2016 
_{Jan}
(76) 
_{Feb}
(53) 
_{Mar}
(88) 
_{Apr}
(79) 
_{May}
(62) 
_{Jun}
(65) 
_{Jul}
(37) 
_{Aug}
(23) 
_{Sep}
(108) 
_{Oct}
(68) 
_{Nov}
(66) 
_{Dec}
(47) 
2017 
_{Jan}
(55) 
_{Feb}
(11) 
_{Mar}
(30) 
_{Apr}
(19) 
_{May}
(14) 
_{Jun}
(21) 
_{Jul}
(20) 
_{Aug}

_{Sep}

_{Oct}

_{Nov}

_{Dec}

S  M  T  W  T  F  S 



1
(1) 
2
(1) 
3
(10) 
4

5

6
(3) 
7
(2) 
8
(3) 
9
(1) 
10

11
(4) 
12
(3) 
13

14
(2) 
15
(1) 
16

17
(2) 
18

19

20
(1) 
21

22

23
(1) 
24
(2) 
25
(3) 
26

27

28

29
(1) 
30
(1) 



From: SourceForge.net <noreply@so...>  20030417 18:53:23

Bugs item #721575, was opened at 20030414 23:45 Message generated for change (Comment added) made by macrakis You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=721575&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: 2/sqrt(2) doesn't simplify Initial Comment: 2/sqrt(2) doesn't simplify. Similarly for 2/2^(2/3). On the other hand, x/sqrt(x) => sqrt(x). And of course sqrt(2) simplifies to itself  it doesn't become 2/sqrt(2)!! I believe the original examples should simplify to sqrt(2) and 2^(1/3). Note that 2^(4/3) => 2*2^(1/3) (the current behavior) is probably CORRECT, in order to make things like 10^(10/3) intelligible. Or is there something I'm missing? Maxima 5.9.0 gcl 2.5.0 mingw32 Windows 2000 Athlon  >Comment By: Stavros Macrakis (macrakis) Date: 20030417 14:53 Message: Logged In: YES user_id=588346 Yes, of course there are ways within Maxima to perform this simplification. But it should be the default in the general simplifer. The logic already appears to be in the general simplifier, but there is a bug in this particular case. If the general simplifier's philosophy were to leave such things untouched, why does it simplify x/sqrt(x) and the like?  Comment By: Barton Willis (willisb) Date: 20030417 14:44 Message: Logged In: YES user_id=570592 Try ratsimp with algebraic : true (C1) z : 2/sqrt(2); (D1) 2/SQRT(2) (C2) ratsimp(z); (D2) 2/SQRT(2) (C3) ratsimp(z),algebraic; (D3) SQRT(2) (C4) z : 2/2^(2/3); (D4) 2/2^(2/3) (C5) ratsimp(z); (D5) 2/2^(2/3) (C6) ratsimp(z),algebraic; (D6) 2^(1/3) (C7)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=721575&group_id=4933 
From: SourceForge.net <noreply@so...>  20030417 18:44:10

Bugs item #721575, was opened at 20030414 22:45 Message generated for change (Comment added) made by willisb You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=721575&group_id=4933 Category: None Group: None Status: Open Resolution: None Priority: 5 Submitted By: Stavros Macrakis (macrakis) Assigned to: Nobody/Anonymous (nobody) Summary: 2/sqrt(2) doesn't simplify Initial Comment: 2/sqrt(2) doesn't simplify. Similarly for 2/2^(2/3). On the other hand, x/sqrt(x) => sqrt(x). And of course sqrt(2) simplifies to itself  it doesn't become 2/sqrt(2)!! I believe the original examples should simplify to sqrt(2) and 2^(1/3). Note that 2^(4/3) => 2*2^(1/3) (the current behavior) is probably CORRECT, in order to make things like 10^(10/3) intelligible. Or is there something I'm missing? Maxima 5.9.0 gcl 2.5.0 mingw32 Windows 2000 Athlon  Comment By: Barton Willis (willisb) Date: 20030417 13:44 Message: Logged In: YES user_id=570592 Try ratsimp with algebraic : true (C1) z : 2/sqrt(2); (D1) 2/SQRT(2) (C2) ratsimp(z); (D2) 2/SQRT(2) (C3) ratsimp(z),algebraic; (D3) SQRT(2) (C4) z : 2/2^(2/3); (D4) 2/2^(2/3) (C5) ratsimp(z); (D5) 2/2^(2/3) (C6) ratsimp(z),algebraic; (D6) 2^(1/3) (C7)  You can respond by visiting: https://sourceforge.net/tracker/?func=detail&atid=104933&aid=721575&group_id=4933 